


























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Common Mistakes in Discrete Mathematics 549 

Chapter 11 

• Incorrectly setting up a decision tree for a problem such as identifying counterfeit coins by weighing them, and 
thereby drawing the wrong conclusions. Each possible situation must correspond to a path from the root of the 
tree to a leaf. 

• Not realizing what type of tree is needed for a particular mathematical model. Issues to consider are whether 
there should be a root (a starting point for some process), whether the children of a vertex are ordered, and 
whether each child should be classified as a right child or a left child. 

• Incorrectly omitting parentheses in expressions written in infix notation. In absence of a default order of 
operations, an expression such as AnBUC is ambiguous, since it might mean either (AnB)UC or An(BUC), 
and these are not the same sets. With prefix or postfix notation, no such ambiguities arise. 

• Forgetting that when doing an inorder traversal of an ordered rooted tree that is not binary, the root of each 
subtree comes after the first subtree but before all the other subtrees. For a binary tree, inorder traversal is 
rather obvious-left, root, right. When the tree isn't binary, we can still define inorder traversals, but the 
definition isn't as natural. 

• When applying Prim's algorithm for finding minimum spanning trees, forgetting that edges become eligible for 
inclusion in the tree gradually (as opposed to Kruskal's algorithm, in which they are all eligible from the start). 
If there is a low-cost edge that does not currently have any endpoint in the tree constructed so far, then it 
cannot yet be added to the tree. When one of its endpoints finally becomes part of the tree, it suddenly 
becomes eligible and can then be added to the tree if it is the lowest cost edge currently eligible. It is easy to 
overlook such edges when performing the algorithm. 

Chapter 12 

• Being off by one level of abstraction when thinkmg about Boolean functions. A Boolean function with n 
variables can be represented by a table with 2n rows; therefore there are 22n different Boolean functions with 
n variables. 

• Putting inverters in the wrong place when building combinational circuits. If we want to invert the value of the 
output of a gate, the inverter needs to go after the gate. 

• Forgetting to apply De Morgan's laws correctly when evaluating the output of a combinatwnal circuit. The 
output of a circuit is a certain Boolean expression of the input variables. When simplifying this expression, it 
is important to remember than xy = x + y and x + y = xy. 

• Not finding the largest possible blocks when looking for minimum Boolean expressions using K-maps. Since 
there is no known efficient algorithm for solving this problem in general (with more than just a few variables), 
it should not be surprising that this procedure seems to involve some ugly "guessing" to it. 

• Not finding the best cover when looking for mimmum Boolean expressions using the Quine-McCluskey method. 
Since there is no known efficient algorithm for solving this problem in general (with more than just a few 
variables), it should not be surprising that this procedure seems to involve some ugly "guessing" to it. It 
might be very hard to make sure that a covering we have found with, say, five minterms is really the best 
possible-that there isn't another covering with four minterms. 

Chapter 13 

• Incorrectly constructing grammars to generate a desired language. There is no algorithm for doing this (this 
statement is a theorem in the theory of computation, similar to Thring's theorem on the unsolvability of the 
halting problem). Constructing grammars is like writing computer programs, and all the advice given in a 
programming course (such as thinking from the top down in a structured way) applies. 

• Incorrectly constructing finite-state machines (mcluding Turing machines) to perform a deszred task. There 
is no algorithm for doing this (this statement is a theorem in the theory of computation, similar to Thring's 
theorem on the unsolvability of the halting problem). Constructing machines is like writing computer programs, 
and all the advice given in a programming course (such as thinking from the top down in a structured way) 
applies. 
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• Not mcluding all the strings that are accepted by a given finzte-state automaton. Sometimes students will follow 
some paths that the machine can take to reach an accepting state and forget to consider others. This will lead 
to a claim that the language recognized by this automaton is a proper subset of what it really is. Make sure 
to "play computer" and follow all the branches. 

• Forgetting to have one arrow leaving each state for each input symbol when constructing deterministic finite­
state automata. You usually want to have a "graveyard" state to which the machine goes when it is clear 
that the input is not acceptable. There needs to be a loop from the graveyard state to itself for each alphabet 
symbol. 

• Failing to realize that a nondeterministic finite-state automaton can accept a string even when some computation 
paths on a certain input drive the machine to a nonaccepting state. As long as at least one path leads to an 
accepting state, the input string is accepted. 

• Fazling to keep track of all the possible states in which a nondeterministic finite-state automaton can enter at 
each step. when constructing the corresponding deterministic automaton. Make good use of all your fingers in 
analyzing what can happen! 

• Failing to check that a machine or a grammar or a regular expression presented as the solution of some problem 
actually works. This is similar to debugging a computer program. Many test cases should be tried, so that you 
can be confident that your machine or grammar or expression really works. 

• When constructing Turing machines. forgetting to mclude all the cases. If the machine can ever reach a certain 
state and be viewing a particular input symbol, then a transition is needed to handle that case. Using top-down 
programming methodology is advisable to make sure your machines do what you want them to do. 

• Getting so bogged down in the details of constructing Turmg machines that you lose sight of the main points 
of the theory. The main point is given in the Church-Turing thesis: that every conceivable computation 
can be performed by any reasonable computational model, be it a Turing machine, your favorite high-level 
programming language, or yourself working with pencil and paper. And on that note of keeping the "big 
picture" in mind, we'll bring this list of common mistakes to a close. 

Appendixes 

• Incorrectly thinkmg that certam operations dzstribute over certain other operations. For example, it is not true 

that Va+b = Va + Vb or va2 + b2 = a + b or aX + aY = aX +Y or log( a + b) = log a + log b. 
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Crib Sheet for Chapter 1 
Logical and: p /\ q is true when both p and q are true, is false when at least one of p and q is false. 

Logical or (inclusive): p V q is true when at least one of p and q is true, is false when both p and q are false. 

Exclusive or: p EB q is true when exactly one of p and q is true, is false otherwise. 

Conditional statement (implication): p -> q == "If p, then q" == "p only if q" == "p is a sufficient condition for q" 
== "q is a necessary condition for p." p -> q is false when p is true and q is false, is true otherwise. -,(p -> q) == p/\( -,q). 
P -> q is equivalent to its contrapositive -'q -> -'p, but not to its converse q -> p or its inverse -,p -> -'q. 

Biconditional statement: p +-+ q, means (p -> q) /\ (q -> p), usually read "if and only if" and sometimes written 
"iff" in English. 

De Morgan's laws: -,(p V q) == (-,p) /\ (-,q); -,(p /\ q) == (-,p) V (-,q). 

The basic logical operations can be represented by gates: 

X~X X-7~xy X~~X+Y 
~ y-7V Y~V' 

inverter AND OR 

X~~XIY 
Y~LJ ' 

NAND 

X~~X,J,Y 
Y~V'-' , 

NOR 
They can be combined to make combinational circuits to represent any logical expression. 

Quantifiers: \lx(P(x) -> Q(x)) == "for all x, if P(x) then Q(x)"; 3x(P(x) /\ Q(x)) == "there exists an x such that 
P(x) and Q(x)." Here P(x) and Q(x) are propositional functions, and there is always a domain or universe 
of discourse, either implicit or explicitly stated, over which the variable ranges. 

Negations of quantified propositions: -,VxP(x) == 3x-,P(x); -,3xP(x) == \lx-,P(x). 

Theorem: a proposition that can be proved; lemma: a simple theorem used to prove other theorems; proof: 
a demonstration that a proposition is true; corollary: a proposition that can be proved as a consequence of a 
theorem that has just been proved. 

A valid argument-one using correct rules of inference based on tautologies-will always give correct conclusions if 
the hypotheses used are correct. Invalid arguments, relying on fallacies, such as affirming the conclusion, denying 
the hypothesis, begging the question, or circular reasoning, can lead to false conclusions. 

Some rules of inference: [p/\ (p -> q)] -> q (modus ponens); [-,q /\ (p -> q)] -> -,p (modus tollens); [(p -> q) /\ 
(q -> r)] -> (p -> r) (hypothetical syllogism); [(pV q) /\ (-,p)] -> q (disjunctive syllogism); {Pea) /\ \Ix [P(x) -> 

Q(x)]} -> Q(a) (universal modus ponens); {-,Q(a) /\ \Ix [P(x) -> Q(x)]} -> -,P(a) (universal modus tollens); 
(\Ix P(x)) -> P(c) (universal instantiation); (P(c) for an arbitrary c) -> \Ix P(x) (universal generalization); 
(3x P(x)) -> (P(c) for some element c) (existential instantiation); (P(c) for some element c) -> 3x P(x) (exis­
tential generalization). 

Trivial proof: a proof of p -> q that just shows that q is true without using the hypothesis p. 

Vacuous proof: a proof of p -> q that just shows that the hypothesis p is false. 

Direct proof: a proof of p -> q that shows that the assumption of the hypothesis p implies the conclusion q. 

Proof by contraposition: a proof of p -> q that shows that the assumption of the negation of the conclusion q 
implies the negation of the hypothesis p (i.e., proof of contrapositive). 

Proof by contradiction: a proof of p that shows that the assumption of the negation of p leads to a contradiction. 

Proof by cases: a proof of (PI V P2 V ... V Pn) -> q that shows that each conditional statement Pi -> q is true. 

Statements of the form p +-+ q require that both p -> q and q -> P be proved. It is sometimes necessary to give two 
separate proofs (usually a direct proof or a proof by contraposition); other times a string of equivalences can be 
constructed starting with p and ending with q: p +-+ PI +-+ P2 +-+ ... +-+ Pn +-+ q. 

To give a constructive proof of 3xP(x) is to show how to find an element x that makes P(x) true. Noncon­
structive existence proofs are also possible, often using proof by contradiction. 

One can disprove a universally quantified proposition \lxP(x) simply by giving a counterexample, i.e., an object 
x such that P(x) is false. One cannot prove it with an example, however. 

Fermat's last theorem: There are no positive integer solutions of xn + yn = zn if n > 2. 

An integer is even if it can be written as 2k for some integer k; an integer is odd if it can be written as 2k + 1 for 
some integer k; every number is even or odd but not both. A number is rational if it can be written as p/q, with 
p an integer and q a nonzero integer. 
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Crib Sheet for Chapter 2 

Empty set: the set with no elements, { }, is denoted 0; this is not the same as {0}, which has one element. 

Subset: A t;;; B == Vx(x E A --+ x E B); proper subset: A c B == (A t;;; B) 1\ (A -=I- B) (i.e., B has at least one 
element not in A). 

Equality of sets: A = B == (A t;;; B 1\ B t;;; A) == Vx(x E A ...... x E B). 

Power set: peA) = {B I B t;;; A} (the set of all subsets of A). A set with n elements has 2n subsets. 

Cardinality: lSI = number of elements in S. 

Some specific sets: R is the set of real numbers, all of which can be represented by finite or infinite decimals; 
N = {O, 1,2,3 .... } (natural numbers); Z = { ... , -2, -1,0,1,2, ... } (integers); Z+ = {l, 2, ... } (positive integers); 
Q = {pi q I p, q E Z 1\ q -=I- O} (rational numbers); Q+ = {pi q I p, q E Z+ } (positive rational numbers). 

Set operations: A x B = {(a, b) I a E A 1\ bE B} (Cartesian product); "II = the set of elements in the universe 
not in A (complement); An B = {x I x E A 1\ x E B} (intersection); AU B = {x I x E A V x E B} (union); 
A - B = An B (difference); A EB B = (A - B) U (B - A) (symmetric difference). 

Inclusion-exclusion (simple case): IA UBI = IAI + IBI- IA n BI· 
De Morgan's laws for sets: An B = "II U B; Au B = "II n B. 

A function f from A (the domain) to B (the codomain) is an assignment of a unique element of B to each 
element of A. Write f : A --+ B. Write f(a) = b if b is assigned to a. Range of f is {f(a) I a E A}; f is onto 
(surjective) == range(f) = B; f is one-to-one (injective) == Val Va2[J(ad = f(a2) --+ al = a2]. 

If f is one-to-one and onto (bijective), then the inverse function f- 1 : B --+ A is defined by f-1(y) = X == f(x) = y. 
If f: B --+ C and g: A --+ B, then the composition fog is the function from A to C defined by fog(x) = f(g(x)). 

Rounding functions: lxJ = the largest integer less than or equal to x (floor function); Ixl = the smallest 
integer greater than or equal to x (ceiling function). 

n 

Summation notation: La, = a1 + a2 + ... + an· 
,=1 

S ffi 
...~. n(n+1) 

urn 0 rst n pOSItIve mtegers: ~ J = 1 + 2 + ... + n = 2 . 
J=l 

Sum of squares of first n positive integers: tj2 = 12 + 22 + ... + n2 = n(n + 1~(2n + 1). 

J=l 
n arn+1 _ a 

Sum of geometric progression: ""' arJ = a + ar + ar2 + ... + arn = if r -=I- 1. 
~ r-l 
)=0 

Two sets have the same cardinality if there is a bijection between them. We say that IAI ~ IBI if there is a 
one-to-one function from A to B. 

A set is countable if it is finite or there is a bijection from the positive integers to the set~in other words, if 
the elements of the set can be listed aI, a2, .... Sets of the latter type are called countably infinite, and their 
cardinality is denoted No. The empty set, the integers, and the rational numbers are countable; the set of real 
numbers and the power set of the set of natural numbers are uncountable. The union of a countable 
number of countable sets is countable. 

The Schroder-Bernstein theorem states that if IAI ~ IBI and IBI ~ IAI, then IAI = IBI. In other words, if there 
is a one-to-one function from A to B and there is a one-to-one function from B to A, then there is a one-to-one and 
onto function from A to B. 

Matrix multiplication: The (i,j)th entry of AB is 2::=1 a,tbtJ for 1 ~ i ~ m and 1 ~ j ~ n, where A is an 
m x k matrix and B is a k x n matrix. Identity matrix In with 1 's on main diagonal and O's elsewhere is the 
multiplicative identity. 

Cardinality arguments can be used to show that some functions are uncomputable. 

Matrix addition (+), Boolean meet (1\) and join (V) are done entry-wise; Boolean matrix product (8) is like matrix 
multiplication using Boolean operations. 

Transpose: At is the matrix whose (i,j)th entry is aJ , (the (j, i)th entry of A); A is symmetric if At = A. 
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Crib Sheet for Chapter 3 

An algorithm is a finite sequence of precise instructions for performing a computation or solving a problem 

Algorithms can be expressed in pseudocode. 

553 

Most algorithms have the following properties: having input, having output, definiteness, correctness, finiteness, 
effectiveness, generality. 

Algorithms that make what seems to be the "best" choice at each step are called greedy algorithms. Sometimes 
they work; sometimes they don't. For example, the greedy change-making algorithm works for American coins, but 
does not work for some other combinations of denominations. 

There are important algorithmic paradigms besides greedy, including brute force (examine all possible solutions 
in order to determine the best solution) and some that will be studied in later chapters (dynamic programming, 
probabilistic algorithms, and divide-and-conquer). 

The halting problem is unsolvable: There is no algorithm to test whether a given computer program with a 
given input will ever halt. 

Big-O notation: "I (x) is O(g(x))" means :JC:Jk\ix(x > k ----> I/(x)1 s: Clg(x)l). Big-O of a sum is largest (fastest 
growing) of the functions in the sum; big-O of a product is the product of the big-O's of the factors. If I is O(g), 
then 9 is 0.(1) ("big-Omega"). If I is both big-O and big-Omega of g, then I is 8(g) ("big-Theta"). 

Little-O notation: This was introduced in the exercise set. We say that I(x) is o(g(x)) iflimx->oo I(x)/g(x) = O. 

Powers grow faster than logs: (logn)C is O(xd ) but not the other way around, where c and d are positive 
numbers. 

If hex) is O(gl(X)) and hex) is 0(g2(X)), then (h + h)(x) is 0(max(gl(x),g2(X))) and (hh)(x) is 0(gl(X)g2(X)). 

logn! is O(nlogn). 

Binary search has time complexity O(logn), whereas linear search has (worst case and average case) time 
complexity O(n); both have space complexity 0(1) (not counting input). Bubble sort and insertion sort have 
0(n2 ) worst case time complexity. 

Matrix multiplication by the standard algorithm has time complexity 0(mlm2m3) if the matrices have dimensions 
ml x m2 and m2 x m3. More efficient algorithms can reduce the complexity of multiplying two n x n matrices from 
0(n3 ) to O(nv7 ). 

Important complexity classes include polynomial (nb ), exponential (bn for b> 1), and factorial (n!). 

A problem that can be solved by an algorithm with polynomial worst-case time-complexity is called tractable; 
otherwise they are called intractable. 

The class P is the class of tractable problems. The class NP consists of problems for which it is possible to check 
solutions (as opposed to finding solutions) in polynomial time. Clearly P ~ NP. The P versus NP problem 
asks whether in fact P = NP; no one knows the answer. 
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Crib Sheet for Chapter 4 

Divisibility: a I b means a -I- 01\ :3c(ac = b) (a is a divisor or factor of b; b is a multiple of a). 

Base b representations: (an-Ian-2 ... a2alao)b = an_Ibn- 1 + ... + a2b2 + alb + ao. To convert from base 10 to 
base b, continually divide by b and record remainders as ao, aI, a2, ... (b = 8 is octal; b = 16 is hexadecimal, 
using A through F for digits 10 through 15). Convert from binary to octal by grouping bits by threes, from the 
right, to hexadecimal by grouping by fours. 

Addition of two binary numerals each of n bits ((an-Ian -2 ... a2alaoh) requires O(n) bit operations. Multi­
plication requires O(n2 ) bit operations if done naively, O(nl 585) steps by more sophisticated algorithms. 

Division "algorithm": \fa \fd > O:Jq :Jr(a = dq + r 1\ 0 ::; r < d); q is the quotient and r is the remainder; we write 
a mod d for the remainder. Example: -18 = 5 . ( -4) + 2, so -18 mod 5 = 2. 

Congruent modulo m: a == b (mod m) iff m I a - b iff a mod m = b mod m. One can do arithmetic in 
Zm = {O, 1, ... ,m - 1} by working modulo m. There are fast algorithms for computing bn mod m, based on 
successive squaring. 

Integer n > 1 is prime iff its only factors are 1 and itself (2,3,5,7, ... ); otherwise it is composite (4,6,8,9, ... ). 
There are infinitely many primes, but it is not known whether there are infinitely many twin primes (primes that 
differ by2) or whether every even positive integer greater than 2 is the sum of two primes (Goldbach's conjecture) 
or whether there are infinitely many Mersenne primes (primes of the form 2P - 1). 

Naive test for primeness (and method for finding prime factorization): To find prime factorization of n, 
successively divide it by all primes less than Vn (2,3,5, ... ); if none is found, then n is prime. If a prime factor p is 
found, then continue the process to find the prime factorization of the remaining factor, namely n/p; this time the 
trial divisions can start with p. Continue until a prime factor remains. The prime number theorem states that 
there are approximately n/ In n primes less than or equal to n. 

Fundamental theorem of arithmetic: Every integer greater than 1 can be written as a product of one or more 
primes, and the product is unique except for the order of the factors. (Proof based on fact that if a prime divides 
a product of integers, then it divides at least one of those integers.) 

Euclidean algorithm for greatest common divisor: gcd(x, y) = gcd(y, x mod y) if y -I- 0; gcd(x, 0) = x. Using 
extended Euclidean algorithm or working backwards, one can find Bezout coefficients and write gcd(a, b) = sa+tb. 

Two integers are relatively prime if their greatest common divisor (gcd) is 1. The integers all a2, ... , an are 
pairwise relatively prime iff gcd( ai, aJ ) = 1 whenever 1 ::; i < j ::; n. 

Chinese remainder theorem: If ml, m2, ... , mn are pairwise relatively prime, then the system \fi(x == 
ai (mod m t )) has unique solution modulo mlm2" ·mn . Application: handling very large integers on a computer. 

Fermat's little theorem: aP- 1 == 1 (mod p) if p is prime and does not divide a. The converse is not true; for 
example 2340 == 1 (mod 341), so 341 (=11· 31) is a pseudoprime. 

If a and b are positive integers, then there exist integers sand t such that as+bt = gcd(a, b) (linear combination). 
This theorem allows one to compute the multiplicative inverse a of a modulo b (i.e., aa == 1 (mod b)) as long as 
a and b are relatively prime, which enables one to solve linear congruences ax == c (mod b). 

A primitive root modulo a prime p is an integer r in Zp such that every nonzero element of Zp is a power of r. 
Discrete logarithms: logr a = e modulo p if r e mod p = a and 1 ::; e ::; p - 1. 

A common hashing function: h(k) = k mod m, where k is the key. 

Check digits, for error-correcting codes like UPCs, involve modular arithmetic. 

Pseudorandom numbers can be generated by the linear congruential method: Xn+1 = (axn + c) mod m, 
where Xo is arbitrarily chosen seed. Then {xn/m} will be rather randomly distributed numbers between 0 and 1. 

Shift cipher: f(p) = (p + k) mod 26 [A f--7 0, B f--7 1, ... J. Julius Caesar used k = 3. Affine cipher uses 
f(p) = (ap + b) mod 26 with gcd(a, 26) = 1. 

RSA public key encryption system: An integer M representing the plaintext is translated into an integer C 
representing the ciphertext using the function C = !'vIe mod b, where n is a public number that is the product of 
two large (maybe 100-digit or so) primes, and e is a public number relatively prime to (p-1)(q-1); the primes p and 
q are kept secret. Decryption is accomplished via M = Cd mod n, where d is an inverse of e modulo (p - 1) (q - 1). 
It is infeasible to compute d without knowing p and q, which are infeasible to compute from n. Similar methods 
can be used for key exchange protocols and digital signatures. 
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Crib Sheet for Chapter 5 

The well-ordering property: Every nonempty set of nonnegative integers has a least element. 

Principle of mathematical induction: Let P(n) be a propositional function in which the domain (universe of 
discourse) is the set of positive integers. Then if one can show that P(I) is true (basis step or base case) and 
that for every positive integer k the conditional statement P( k) ---t P( k + 1) is true (inductive step), then one has 
proved VnP(n). The hypothesis P(k) in a proof of the inductive step is called the inductive hypothesis. More 
generally, the induction can start at any integer, and there can be several base cases. 

Strong induction: Let P(n) be a propositional function in which the domain (universe of discourse) is the set of 
positive integers. Then if one can show that P(I) is true (basis step or base case) and that for every positive 
integer k the conditional statement [P(I) A P(2) A .. , A P(k)] ---t P(k + 1) is true (inductive step), then one 
has proved VnP(n). The hypothesis Vj"'5.k P(j) in a proof of the inductive step is called the (strong) inductive 
hypothesis. Again, the induction can start at any integer, and there can be several base cases. 

Sometimes inductive loading is needed, where we must prove by mathematical induction or strong induction 
something stronger than the desired statement so as to have a powerful enough inductive hypothesis (this concept 
was introduced in the exercises). 

Inductive or recursive definition of a function f with the set of nonnegative integers as its domain: specification 
of f(O), together with, for each n > 0, a rule for finding f(n) from values of f(k) for k < n. Example: O! = 1 and 
(n + I)! = (n + 1) . n! (factorial function). 

Inductive or recursive definition of a set S: a rule specifying one or more particular elements of S, together with 
a rule for obtaining more elements of S from those already in it. It is understood that S consists precisely of those 
elements that can be obtained by applying these two rules. 

Structural induction can be used to prove facts about recursively defined objects. 

Fibonacci numbers: fa, il, 12, ... : fa = 0, il = 1, and fn = fn-l + fn-2 for all n 2: 2. 

Lame's theorem: The number of divisions used by the Euclidean algorithm to find gcd(a, b) is O(log b). 

An algorithm is recursive if it solves a problem by reducing it to an instance of the same problem with smaller 
input. It is iterative if it is based on the repeated use of operations in a loop. 

There is an efficient recursive algorithm for computing modular powers (bn mod m), based on computing 
bln / 2J mod m. 

Merge sort is an efficient recursive algorithm for sorting a list: break the list into two parts, recursively sort each 
half, and merge them together in order. It has O( n log n) time complexity in all cases. 

A program segment S is partially correct with respect to initial assertion p and final assertion q, written 
p{ S}q, if whenever p is true for the input values of Sand S terminates, q is true for the output values of S. 

A loop invariant for while condition S is an assertion p that remains true each time S is executed in the loop; 
i.e., (p A condition){S}p. If p is true before the program segment is executed, then p and -,condztion are true after 
it terminates (if it does). In symbols, p{ while condition S}( -,condition A p). 
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Crib Sheet for Chapter 6 

Sum rule: Given t mutually exclusive tasks, if task i can be done in n, ways, then the number of ways to do 
exactly one of the tasks is nl + n2 + ... + nt. 

Size of union of disjoint sets: IAI U A2 U··· U Ani = IAII + IA21 + ... + IAnl. 
Two-set case of inclusion-exclusion: IA U BI = IAI + IBI- IA n BI. 
Product rule: If a task consists of successively performing t tasks, and if task i can be done in n, ways (after 
previous tasks have been completed), then the number of ways to do the task is nl . n2 ... nt. 

A set with n elements has 2n subsets (equivalently, there are 2n bit strings of length n). 

Tree diagrams can be used to organize counting problems. 

Pigeonhole principle: If more than k objects are placed in k boxes, then some box will have more than 1 object. 
Generalized version: If N objects are placed in k boxes, then some box will have at least fN/kl objects. 

Ramsey number R( m, n) is the smallest number of people there must be at a party so that there exist either m 
mutual friends or n mutual enemies (assuming each pair of people are either friends or enemies). R(3, 3) = 6. 

r-permutation of set with n objects: ordered arrangement of r of the objects from the set (no repetitions allowed); 
there are P(n, r) = nf/(n - r)! such permutations. 

r-combination of set with n objects: unordered selection (i.e., subset) of r of the objects from the set (no 
repetitions allowed); there are C(n,r) = n!/[r!(n - r)!l such combinations. Alternative notation is G), called 
binomial coefficient. 

Pascal's identity: C(n, k - 1) + C(n, k) = C(n + 1, k) if n ~ k ~ 1; allows construction of Pascal's triangle of 
binomial coefficients, using C(n, 0) = C(n, n) = 1 along the sides. 

Combinatorial identities often have combinatorial proofs: C(n, r) = C(n, n -r); (a+ b)n = L,~=o C(n, k)an-kbk 

(binomial theorem), with corollary L,~=o C(n, k) = 2n; C(m+n, r) = L,~=o C(m, r-k)C(n, k) (Vandermonde's 
identity). 

Number of r-permutations of an n-set with repetitions allowed is n T
; number of r-combinations of an n-set 

with repetitions allowed is C(n + r - 1, r). This latter value is the same as the number of solutions in 
nonnegative integers to Xl + X2 + ... + Xn = r. 

Permutations with indistinguishable objects: Number of n-permutations of an n-set with n, indistinguishable 
objects of type t for 1::::; t ::::; k is n!/(nl!n2!'" nk!)' This also gives the number of ways to distribute n distinguishable 
objects into k distinguishable boxes so that box t gets nt objects. 

For distributing distinguishable object into distinguishable boxes, use product rule (or the formula n!/(nl!n2!'" nk!) 
if the number in each box is specified). For distributing indistinguishable object into distinguishable boxes, use 
formula for the number of combinations with repetitions allowed. For distributing distinguishable object into 
indistinguishable boxes, there is no good closed formula; Stirling numbers of the second kind are involved. 
Distributing indistinguishable object into indistinguishable boxes involves partitions of positive integers, and 
there is no good closed formula. 

There are good algorithms for finding the lexicographically "next" permutation or combination and thereby for 
generating all permutations or combinations. 
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If all outcomes are equally likely in a sample space S with n outcomes, then the probability of an event E is 
p(E) = IEl/n; more generally, if P(Si) is probability of ith outcome Si, then p(E) = 2:s ,EEP(Si). 

Probability distributions satisfy these conditions: 0 :::; p( s) :::; 1 for each S E S, and 2:sES p( s) = l. 

For complementary event, p(E) = 1 - p(E); for union of two events (either one or both happen), p(E U F) = 
p(E) + p(F) - p(E n F); for independent events, p(E n F) = p(E)p(F). 

The conditional probability of E given F (probability that E will happen after it is known that F happened) is 
p(EIF) = p(E n F)lp(F). 

Bernoulli trials: If only two outcomes are success and failure, withp(success) = p andp(failure) = q = 1-p, then 
the binomial distribution applies, with probability of exactly k success in n trials being b(k; n, p) = C( n, k )pkqn-k. 

Bayes' theorem: If E and F are events such that p(E) =1= 0 and p(F) =1= 0, then 

(F I E) _ p(E I F)p(F) 
p - p(E I F)p(F) + p(E I F)p(F) 

A random variable assigns a number to each outcome. Expected value (expectation) of random variable X is 
E(X) = 2:~=IP(Si)X(S,); alternatively, E(X) = 2:rEX(S)P(X = r)r Expected number of successes for n Bernoulli 
trials is pn. 

Variance ofrandom variable X is V(X) = 2:~=IP(Si)(X(S,) _E(X))2; variance can also be computed as V(X) = 
E(X2) - E(X)2; square root of variance is standard deviation a(X); variance of number of successes for n 
Bernoulli trials is npq. 

Xl and X 2 are independent if p(XI = rl and X 2 = r2) = p(XI = rl) . P(X2 = r2). In this case E(XY) = 
E(X)E(Y). 

Expectation is linear even when the variables are not independent. This means that the expectation of a sum is 
sum of expectations, and E(aX + b) = aE(X) + b. 

Variance of a sum is the sum of the variances (V(XI +X2) = V(Xd + V(X2» when the variables are independent. 

The random variable X that gives the number of flips needed before a coin lands tails, when the probability of tails 
is p and the flips are independent, has the geometric distribution: p(X = k) = (1 - p)k-Ip for k = 1,2, ... ; 
E(X) = lip. 

Chebyshev's inequality: p(IX(s) - E(X)I ~ r) :::; V(X)lr2. 

A probabilistic algorithm is an algorithm that might give the incorrect answer but only with small probability. 
For example, there are good probabilistic tests as to whether or not a natural number is prime. 

The probabilistic method is a proof technique that shows the existence of an object with a given property by 
showing that there is a nonzero probability of choosing such an object if choices are made at random. For example, 
there is a probabilistic proof that the Ramsey number R( k, k) is at least 2k/2. 
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A recurrence relation for a sequence ao, aI, a2, ... , is a formula expressing each an in terms of previous terms 
(for all n > no); initial conditions specify ao through ana; a solution to such a system is an explicit formula for 
an in terms of n that satisfies the recurrence relation and initial conditions. 

The Fibonacci numbers are defined recursively by fo = 0, II = 1, and fn = fn-l + fn-2 for n ;::: 2; continues 
h = 1, h = 2, f4 = 3, f5 = 5, f6 = 8, h = 13, h = 21, ... ; explicit formula is that fn equals nearest integer to 
((1 + -/5)/2)n 1-/5. 
A recurrence relation is linear of degree k if it is of the form an = Clan-l + C2an-2 + ... + Ckan-k + f(n); if all 
the c, 's are constants, then it has constant coefficients; if f(n) is identically 0, then it is homogeneous. Such a 
recurrence relation and k initial conditions completely determine the sequence. 

Recurrence relations of degree 1 can often be solved by iteration. Given an expressed in terms of an-I, rewrite 
an-l in this equation using the same recurrence relation with n - 1 in place of n. This expresses an in terms of 
an-2. Then rewrite an -2 in terms of an -3, again using the recurrence relation. Continue in this way, noting the 
pattern that evolves, until finally you have an written explicitly in terms of al (or ao), probably as a series. This 
gives the explicit solution (preferably with the series summed in closed form). 

To solve linear homogeneous recurrence relation with constant coefficients: (1) write down the characteristic 
equation rk - clrk - l - C2rk-2 - ... - Ck = 0 and find all its roots, with multiplicities; (2) each distinct root 
(characteristic root) r gives rise to a solution an = rn; if a root is repeated, occurring s times, then there are 
solutions an = n'rn for i = 0,1, ... ,s - 1; (3) take arbitrary linear combination of all solutions so obtained, with 
coefficients aI, a2, ... , ak; (4) plug in the k initial conditions to solve for the a's. 

To solve linear nonhomogeneous recurrence relation with constant coefficients: (1) solve the associated homo­

geneous recurrence relation (with the f(n) term omitted) to obtain a general solution a~h) with some yet-to­

be-calculated constants a,; (2) obtain a particular solution a~) of the nonhomogeneous recurrence relation using 
the method of undetermined coefficients (the form to use depends on f(n) and on the solution of the associated 
homogeneous recurrence relation); (3) write down the general solution: an = a~h) + a~); (4) plug in the k initial 
conditions to solve for the a's. 

Divide-and-conquer relation: f(n) = af(nlb) + g(n). If f is an increasing function satisfying this relation 
whenever n is a power of b, where g(n) = cnd, then f(n) = O(nd) if a < bd, f(n) = O(ndlogn) if a = bd, and 
f(n) = O(nlogba) if a> bd (master theorem). 

Divide-and-conquer algorithms work by dividing a problem into simpler non-overlapping subproblems; dy­
namic programming algorithms work by dividing a problem into simpler overlapping subproblems. Matrix 
multiplication can be done in O(nlog7) ~ O(n2 .8 ) steps, rather than the naive O(n3 ), using a divide-and-conquer 
algorithm. Talks in a lecture hall can be scheduled using dynamic programming to maximize total attendance. 

Generating functions are expressions of the form f (x) = 2::%"=0 akxk, associated with an infinite sequence {ak}. 
They can be used to solve recurrence relations, prove combinatorial identities, and solve counting problems. To 
model a combinatorial situation (such as counting how many ways there are to distribute cookies), let ak be the 
quantity of interest (the answer when there are k cookies); choices are modeled by adding (corresponding to "or" 
situations-the person can get 1, 2, or 3 cookies) or multiplying (corresponding to "and" situations-Tom, Dick, and 
Jane must each receive cookies) polynomials in x. The combinatorics is then replaced by the algebra of multiplying 
out the polynomials or obtaining a closed form expression. The most important generating function in applications 
is 1/(1 - ax)n = 2::%"=0 C(n + k - 1, k)akxk. Partial fractions must sometimes be used when solving recurrence 
relations using generating functions. 

Inclusion-exclusion principle: (for n = 3) IAUBUCI = IAI + IBI + ICi-IAnBI-IAncl-IBnCl + IAnBnCI; 
(general case) IAI U A2 U··· U Ani = 2::, IA,I- 2::'<J lA, n AJ 1+ 2::'<J<k IA n AJ n Akl- ... + (-I)n+1IAI n A2 n 
... n Ani. Can be applied to counting number of objects among N objects with none of a collection of properties: 

N(P{P~ ... P~) = N - 2::, N(P,) + '£'<J N(P,PJ) - 2::'<J<k N(P,PJPk) + ... + (_I)n N(HP2 ... Pn). Specific 
application: counting the number of primes up to n found by using sieve of Eratosthenes. 

Number of onto functions from an m-set to an n-set is nm - C(n, 1)(n - l)m + C(n, 2)(n - 2)m - ... + 
(-I)n- IC(n,n -1)lm. 

A derangement is a permutation leaving no object in its original position; there are Dn = n![1 - Ill! + 1/2! -
1/3! + ... + (_I)n In!] derangements of n objects; as n -700, Dnln! quickly approaches lie ~ 0.368. 
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(Binary) relation R from A to B: subset of Ax B. Write aRb for (a, b) E R; relation on A is relation from A 
to A; graph of a function from A to B is a relation such that 'Va E A :3 exactly one pair (a, b) in the relation. 

Relation R on a set A is reflexive if aRa for all a E A; irreflexive if aRa for no a E A; symmetric if aRb implies 
bRa for all a, b E A; asymmetric if aRb implies that b is not related to a, for all a, b E A; antisymmetric if 
aRb A bRa implies a = b for all a, b E A; transitive if aRb A bRc implies aRc for all a, b, c E A. 

Inverse relation to R is given by bR-la if and only if aRb. 

If R is a relation from A to B, and S is a relation from B to C, then the composite is the relation So R from A 
to C in which a is related to c if and only if there exists abE B such that aRb and bSc. Rn = R 0 R 0'" 0 R. 

n-ary relation on domains AI, A 2, ... , An is a subset of Al x A2 X ... x An; data bases using the relational data 
model are just sets of n-ary relations in which each n-tuple is called a record made up of fields (n is the degree); 
a domain is a primary key if the corresponding field uniquely determines the record. 

The projection Pi" '2, ... ,'= maps an n-tuple to the m-tuple formed by deleting all fields not in the list iI, i2, .. ·, im . 

The join Jp takes a relation R of degree m and a relation S of degree n and produces a relation of degree m + n - p 
by finding all tuples (aI, a2,.'" am+n- p) such that (aI, a2,"" am) ERA (am-p+l, am - p+2, ... , am- p+n ) E S. 

A relation R on A = {aI, a2,.'" an} can be represented by an n x n matrix MR whose (i,j)th entry is 1 if a,Ra) 
and is 0 otherwise. Reflexivity, symmetry, antisymmetry, transitivity can easily be read off the matrix. Boolean 
products of the matrices give the matrix for the composite (MSoR = MR 8 Ms). 

Digraph for R on A: a vertex for each element of A and an arrow (arc, edge) from a to b whenever aRb (loop 
at a when aRa). Reflexivity, symmetry, antisymmetry, transitivity can easily be read off the digraph. 

Closure of relation R on set A with respect to property P: smallest relation on A containing R and having 
property P; reflexive closure~add all pairs (a, a) if not already in R (R U ~A, where ~A = {(a, a) I a E A}); 
symmetric closure~add pair (b, a) whenever (a, b) is in R, if (b, a) is not already in R (R U R- I ). 

Transitive closure of R equals R* (connectivity relation for R), defined as U~=l Rn; can be computed efficiently 
at the matrix level using Warshall's algorithm, and visually at the digraph level by considering paths. 

A relation R on set A is an equivalence relation if R is reflexive, symmetric, and transitive; usually equivalence 
relations can be recognized by their definition's being of the form "two elements are related if and only if they 
have the same [something]." For each a E A the set of elements in A related to (i.e., equivalent to) a is the 
equivalence class of a, denoted [a]. (Canonical example: congruence modulo m.) The set of equivalence classes 
partitions A into pairwise disjoint nonempty sets; conversely, every partition of A induces an equivalence relation 
by declaring two elements to be related if they are in the same set of the partition. 

A relation R on set A is a partial order if R is reflexive, antisymmetric, and transitive; total or linear order if 
in addition every pair of elements are comparable (either aRb or bRa). (A, R) is called a partially ordered set 
or poset, and R is denoted ::S (-< means ::S but not equal); canonical example is <;;: on P(S). 

Partial orders on Ai induce lexicographic order on Al x A2 X ... x An given by (aI, a2,"" an) -< (bl , b2,·.·, bn ) 
if for some i ;::: 0, al = bl , ... , a, = bt , and a,+! -< b,+l. A partial order on A induces lexicographic order 
on strings A* given by ala2'" an -< bl b2 ... bm if (aI, a2, ... , at) -< (bl , b2, ... , bt ) where t = min(m, n) or if 
(al,a2, ... ,an ) = (bl ,b2, ... ,bn ) and n < m. 

Hasse diagram represents poset on finite set by placing x above y whenever y -< x, and also in this case drawing 
line from x to y if there is no z such that y -< z -< x; then a -< b if and only if there is an upward path from a to b 
in the Hasse diagram. 

m in a poset is maximal if there is no x with m -< x (minimal in the dual situation); m is a greatest element 
if x ::S m for all x (dually for least element). An upper bound for a subset B is an element u such that b ::S u 
for all bE B (dually for lower bound), and u is a least upper bound if it is an upper bound such that u ::S v for 
every upper bound v (dually for greatest lower bound). A poset is a lattice if l.u.b.'s and g.l.b.'s always exist. 

Every finite poset has a minimal element that can be found by moving down the Hasse diagram. Iterating this ob­
servation gives an algorithm for obtaining a total order compatible with the partial order (topological sorting)~ 
keep peeling off a minimal element. 
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A simple graph G = (V, E) consists of nonempty set of vertices (singular: vertex) and set of unordered pairs of 
distinct vertices called edges. A multigraph allows more than one edge joining same pair of vertices (multiple 
or parallel edges)-E is just a set with an endpoint function f taking each edge e to its two distinct endpoints. 
A pseudograph is like a multigraph but endpoints f(e) need not be distinct, allowing for loops. A directed 
graph (digraph) is just like a simple graph except that edges are directed (each e is an ordered pair, and loops 
are allowed). Directed multigraph is just like multigraph (parallel edges allowed) except that edges are directed 
(loops allowed). Given directed graph, we can ignore order and look at underlying undirected graph. 
Graphs can be used to model relationships of many kinds, such as acquaintances, food webs, telephone calls, 
road systems, the Internet, tournaments, organizational structure. 

Vertices joined by an edge are adjacent and the edge is incident to them. Degree of a vertex (deg( v)) is 
the number of incident edges, with loops counted double; isolated vertex has degree 0, pendant vertex has 
degree 1; regular graph has all degrees equal. In digraph deg- (v) is number of edges leading into v (in-degree; 
v is terminal vertex) and deg + ( v) is number of edges leading out of v (out-degree; v is initial vertex). 

Handshaking theorem: Undirected: 2e = 2:vEV deg( v); corollary-number of vertices of odd degree is even. 

Directed: e = LVEV deg-(v) = LVEV deg+(v). 

In bipartite graph vertex set can be partitioned into two nonempty sets with no edges joining vertices in same 
set. 
The complete graph Kn has n vertices and an edge joining every pair (n(n-l)/2 edges in all); complete bipartite 
graph Km,n has m + n vertices in parts of sizes m and n and an edge joining every pair of vertices in different parts 
(mn edges in all). The cycle Cn has n vertices and n edges, joined in a circle; the wheel Wn is en with one more 
vertex joined to these n vertices. The cube Qn has all n-bit binary strings for vertices, with an edge between every 
pair of vertices differing in only one bit position. 

(V, E) is subgraph of (W, F) if V ~ Wand E ~ F; union of two simple graph is formed by taking union of 
corresponding vertex sets and corresponding edge sets. 

Graph can be represented by adjacency matrix (m in position (i, j) denotes m parallel edges from i to j), 
adjacency lists, incidence matrix (1 is position (i,j) says that vertex i is incident to edge j). 
Two graphs are isomorphic if there is a bijection between their vertex sets that preserves all adjacencies and all 
nonadjacencies; to show that two graphs are not isomorphic, find an invariant on which they differ (e.g., degree 
sequence or existence of cycles). 

A path of length n from u to v is a sequence of n edges leading successively from u to v; is a circuit if n > 0 and 
u = v, is simple if no edge occurs more than once. A graph is connected if every pair of vertices is joined by a path; 
digraph is strongly connected if every pair of vertices is joined by a path in each direction, weakly connected if 
underlying undirected graph is connected. Components are maximal connected subgraphs. Removal of cut edge 
(bridge) or cut vertex (articulation point) creates more components. 

Vertex connectivity of a graph G: 1\',( G) = size of a smallest vertex cut (set of edges whose removal discon­
nects G); Gis k-connected if I\',(G) '2: k; edge connectivity: '\(G) = size of a smallest edge cut. 

(i,j)th entry of Ar, where A is adjacency matrix, counts numbers of paths of length r from i to j. 

An Euler circuit [path] is simple circuit [path] containing all edges. Connected graph has an Euler circuit [path] 
if and only if the vertex degrees are all even [the vertex degrees are all even except for at most two vertices]. Splicing 
algorithm or Fleury's algorithm finds them efficiently. 

A Hamilton path is path containing all vertices exactly once; Hamilton path together with edge back to starting 
vertex is Hamilton circuit. No good necessary and sufficient conditions for existence of these, or algorithms for 
finding them, are known. Qn has Hamilton circuit for all n '2: 2 (Gray code). 

Weighted graphs have lengths assigned to edges; one can find shortest path from u to v (minimum sum of 
weights of edges in the path) using Dijkstra's algorithm. 

A planar graph is a graph having a planar representation (drawing in plane without edges crossing); Kura­
towski's theorem: graph is planar if and only if it has no subgraph homeomorphic to (formed by performing 
elementary subdivisions on edges of) K5 or K 3 ,3. 

Euler's formula: Given planar representation with v vertices, e edges, c components, r regions, v - e + r = c + 1; 
corollary: in planar graph with at least 3 vertices, e :S 3v - 6. 

A graph is colored by assigning colors to vertices with adjacent vertices getting distinct colors; minimum number 
of colors required is chromatic number. Every planar graph can be colored with four colors. There are also 
applications of edge colorings (adjacent edges must get different colors). 



Crib Sheets 561 

Crib Sheet for Chapter 11 

A tree is a connected undirected graph with no simple circuits; characterized by having unique simple path between 
every pair of vertices, and by being connected and satisfying e = v - 1. A forest is an undirected graph with no 
simple circuits-each component is a tree, and e = v - number of components. Every tree has at least two vertices 
of degree 1. 

A rooted tree is a tree with one vertex specified as root; can be viewed as directed graph away from root. If uv is 
a directed edge, then u is parent and v is child; ancestor, descendant, sibling defined genealogically. Vertices 
without children are leaves; others are internal. Draw trees with root at the top, so that vertices occur at levels, 
with root at level 0; height is maximum level number. A tree is balanced if all leaves occur only at bottom or 
next-to-bottom level, complete if only at bottom level. The subtree rooted at a is the tree involving a and all 
its descendants. 

An m-ary tree is a rooted tree in which every vertex has at most m children (binary tree when m = 2); a full 
m-ary tree has exactly m children at each internal vertex. Full m-ary tree with i internal vertices and l leaves has 
n = i + l = mi + 1 vertices. An m-ary tree with height h satisfies l :::; mh, so h :::::: Pogm II (equality in latter 
inequality if tree is balanced). 

An ordered rooted tree has an order among the children of each vertex, drawn left-to-right; in ordered binary 
tree, each child is a right child or left child, and subtree rooted at right [left] child is called right [left] subtree. 

A binary search tree (BST) is binary tree with a key at each vertex so that at each vertex, all keys in left subtree 
are less and all keys in right subtree are greater than key at the vertex; O(logn) algorithm for insertion and search 
in BST. 

Decision trees provide lower bounds on number of questions an algorithm needs to ask to accomplish its task for 
all inputs (e.g., coin-weighing, searching). 

Binary trees can be used to encode prefix codes, binary codes for symbols so that no code word is the beginning 
of another code word. Huffman codes are efficient prefix codes for data compression. 

Game trees can be used to find optimal strategies for two-person games, using the minmax principle. Value of 
a leaf is payoff to first player. Value of an internal vertex at an even level (square) is maximum of values of its 
children; value of an internal vertex at an odd level (circle) is minimum of values of its children. 

Universal address system: root is labeled 0; children of root are labeled 1, 2, ... ; children of vertex labeled x 
are labeled x.l, x.2, .... Addresses are ordered using preorder traversal. 

Preorder visits root, then subtrees (recursively) in preorder; postorder visits subtrees (recursively) in postorder, 
then root; inorder visits first subtree (recursively) in inorder, then root, then remaining subtrees (recursively) in 
inorder. 

The expression tree for a calculation has constants at leaves, operations at internal vertices (evaluated by applying 
operation to values of its children). 

Prefix (Polish) notation corresponds to preorder traversal of expression tree (operator precedes operands); post­
fix (reverse Polish) notation corresponds to postorder traversal of expression tree (operands precede operator); 
both of these allow unambiguous expressions without using parentheses. Infix form is normal notation but requires 
full parenthesization (corresponds to inorder traversal of expression tree). 

Naive sorting routines like bubble sort require O( n2 ) steps in worst case; the best that can be done with comparison­
based sorting is O(nlogn) (a huge improvement), using something like merge sort. 

A spanning tree is a tree containing all vertices of a connected given graph; can be found by depth-first search 
(recursively search the unvisited neighbors) or breadth-first search (fan out). Edges not in depth-first search 
spanning tree (back edges) join vertices to ancestors or descendants. Edges not in breadth-first search spanning 
tree (cross edges) join vertices at same level or level differing by one. Depth-first search can be modified to 
implement backtracking algorithms for exhaustive consideration of all cases of a problem (like graph coloring). 
Minimum spanning trees can be found in weighted graphs using greedy Prim or Kruskal algorithms (choose 
least costly edge at each stage that doesn't get you into trouble). 
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Boolean operations: sum, product, and complementation defined on {O, 1} by 0 + 0 = 0, 0 + 1 = 1 + 0 = 
1 + 1 = 1, 1·1 = 1, 0·1 = 1·0 = 0·0 = 0 (also write product using concatenation, without the dot), 0 = 1, 1=0; 
also XOR defined by lEBI = 0E:l:J0 = 0 and lEBO = OEBI = 1, NAND defined by III = 0 and 11 0 = 011 = 0 I 0 = 1, 
NOR defined by 0 1 0 = 1 and 1 1 0 = 0 1 1 = 1 1 1 = O. A Boolean algebra is an abstraction of this, with 
operations V, /\, and -, which also applies to other situations (e.g., sets). 

Boolean operations obey same identities (commutative, associative, idempotent, distributive, De Morgan, etc.) with 
U replaced by +, n replaced by" U replaced by 1, and 0 replaced by O. 

Boolean variables are variables taking on only values 0 and 1; Boolean expression is expression made up from 
Boolean constants (0 and 1), variables and operations combined in usual ways with parentheses where desired to 
override the natural precedence that products are evaluated before sums. 

Dual of Boolean expression: interchange 0 and 1, + and· ; dual of an identity is an identity. 

Boolean functions are functions from n-tuples of variables to {O, 1}. They can be represented using Boolean 
expressions, and in particular, in disjunctive normal form as sums of products or in conjunctive normal 
form as products of sums. In sum of products form, each product is a minterm Y1Y2'" Yn, where each Y. is a 
literal, either x, or x •. Two expressions are called equivalent if they compute the same function. 

Set of operators is functionally complete if every Boolean function can be represented using them. Examples are 
{+," -}, {+, -}, {', -}, {I}, and {l}. 

The standard Boolean operations can be represented by gates: 

x~X x~f\ "xy X-7~x+y X-7f\~XIY 
~ Y~L/ Y~~ Y~LI" 

X-7~X-l-Y 
Y~~ 

inverter AND OR NAND NOR 
They can be combined to make combinational circuits to represent any Boolean function, such as (full) adders 
(take two bits and a carry and produce a sum bit and a carry) or half-adders (same, without the carry as input). 

MiniInization of circuits: given Boolean function in sum of products form, find an expression as simple as 
possible to represent it (i.e., use as few literals and operations as possible, meaning using few gates to produce the 
circuit). Geometric method (Karnaugh maps or K-maps) and tabular method (Quine-McCluskey procedure) 
organize this task efficiently for small n. Typical K-maps with blocks circled: yz yz 9z 9z 

yz yz yz yz 17'1' 1 1 (1 

~ lL 
1\ 1 1) 

x f) 1 il""l ""\ 
f- \... .2 

~ ~ J. 
Typical Quine-McCluskey calculation: 

Step 1 Step 2 
Term String Term String Term String 

1 wxyz 1111 (1,2)wxy 111- {= (3,4,5,8) Y z --01 
2 wxyz 1110 (1,3) w x z 11-1 {= 

3 wxyz 1101 (3,4)wyz 1-01 
4 wxyz 1001 (3,5)xyz -101 
5 wxyz 0101 (4,6)wxy 100- {= 

6 wxyz 1000 (4,8) xy z -001 
7 wxyz 0010 {= (5,8) wy z 0-01 
8 wxyz 0001 

1 2 3 4 5 6 7 8 
yz X X X X 
wxy X X 
wxz X X 
wxy X X 
wxyz X 

y z + w x Y + w X y + w x Y z covers all minterms 
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A vocabulary or alphabet V is just a finite nonempty set of symbols; strings of symbols from V, including the 
empty string.>., are words; the set of all words is denoted V*; a language is any subset of V*. 

If Ll and L2 are languages, then so are the union Ll U L 2 , intersection Ll n L 2 , concatenation LIL2 = {uv I 
u E Ll 1\ v E L 2 } (L2 = LL, etc.), Kleene closure L* = {A} U L U L2 U L 3 ... , complement L = V* - L. 

Phrase-structure grammar: G = (V, T, 8, P), where V is a vocabulary, T <;;: V is the set of terminal symbols 
(the nonterminal symbols are N = V - T), 8 E V is the start symbol, P is a set of productions, which are 
rules of the form WI -+ W2, where WI, W2 E V*. (The convention is to use capital letters for the nonterminals.) 

Derivations: If a string u can be transformed to a string v by applying some production (i.e., replacing a substring 
WI in u by W2 where WI -+ W2 is a production), then write u '* v and say v is directly derivable from u; if 

Ul '* U2 '* ... '* Un, then write Ul =* Un and say Un is derivable from Ul· 

The language generated by G is the set of strings of terminal symbols derivable from 8 (the start symbol). 

Types of grammars: type O-no restrictions; type 1 (context-sensitive )-productions are all of the form 
lAr -+ lwr, where A is a nonterminal symbol, land r are strings of zero or more terminal or nonterminal symbols, 
and W is a nonempty string of terminal or nonterminal symbols, or of the form 8 -+ A as long as 8 does not appear 
on the right-hand side of any other production; type 2 (context-free)-left side of each production must be single 
nonterminal symbol; type 3 (regular)-only allowed productions are A -+ bB, A -+ b, and 8 -+ A, where A, B, 
and 8 are nonterminals, b is terminal, and 8 is start symbol; each type is included in previous type. Productions in 
type 2 grammars can also be represented in Backus-Naur form; nonterminals have angled brackets surrounding 
them; a vertical bar means "or"; arrows are replaced by ::=; e.g., (A) ::= (A)c(A)(B) 131 (B) (C). 
Derivation (or parse) tree shows transformation of start symbol into string of terminals (the leaves, read from 
left to right), invoking a production at each internal vertex. 

Palindrome: string that reads the same forward as backward, i.e., W = w R (string whose first half is the reverse of 
its last half, either of the form uuR or uxuR for x a symbol). The set of palindromes is context-free but not regular. 

Finite state machine with output on the transitions (Mealy machines): M = (8, I, 0, f, g, so), where 8 is 
set of states, I and 0 are input and output alphabets, So E S is start state, f : S x I -+ Sand g : S x I -+ 0 
are transition function and output function; can be represented in state table, or by state diagram with 
i,o labeling edge (s, t) if f(s, i) = t and g(s, i) = o. Machine "moves" from state to state as it reads an input string, 
producing an output string of the same length; can be used for language recognition (output symbol 1 if input 
string read so far is in language, 0 if not). 

Finite state machine with output on the states (Moore machines): same as Mealy machine except g : 
S -+ 0 assigns an output to every state rather than to every transition; output is one symbol longer than input. 

Finite state machine with no output (deterministic automaton): JlvI = (8,I, f, So, F)-same as Mealy 
machine except that there is no output function but rather a set of final states F <;;: 8. A string W is recognized 
or accepted by M if M ends up in a final state on input W; the language recognized or accepted by JlvI, written 
L(M), is the set of all strings accepted by M. (Plural of "automaton" is "automata.") 

Nondeterministic automaton: same as deterministic one except that the transition function f sends a state 
and input symbol to a set of states; think of the machine as choosing which state to go into next from among 
the possibilities provided by f. A string is accepted if some sequence of choices leads to a final state at the end 
of the input; L( M) defined as before. For automata of either type, we say that Ml and M2 are equivalent if 
L(Md = L(M2 ). Theorem: Given a nondeterministic finite automaton, there is an equivalent deterministic one. 

Regular expressions over a set I are built up from symbols for the elements of I, a symbol for the empty set, 
and a symbol for the empty string by the operations of concatenation, union, and Kleene closure. The expressions 
represent the corresponding sets of strings. Regular sets (languages) are sets represented by regular expressions. 
Regular languages are closed under intersection, union, concatenation, Kleene closure, complement; context-free 
languages are closed under union, concatenation, Kleene closure. 

Theorem: A set is regular if and only if it is generated by some regular grammar if and only if it is accepted by 
some finite automaton. 

Pumping lemma: If z is a string in L(M) of length longer than the number of states in M, then we can write 
z = uvw, with v =I- A so that uv'w E L(M) for all i. This allows us to prove, for example, that {onl n I n = 1,2,3, ... } 
is not regular. 

A Turing machine is specified by a set of 5-tuples (s, x, s', x', d): if in state s scanning symbol x on tape, it writes 
x' on tape, enters state s', and moves tape head R or L according to d. TM's can recognize all computable (Type 0) 
languages, can compute all computable functions (Church-Turing thesis). 
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