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Objectives and Functions

e Convenience
—Making the computer easier to use
o Efficiency
—Allowing better use of computer resources
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Operating System Services

e Program creation

e Program execution

o Access to I/O devices

e Controlled access to files

e System access

e Error detection and response
e Accounting



O/S as a Resource Manager
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Types of Operating System

e Interactive

e Batch

e Single program (Uni-programming)
e Multi-programming (Multi-tasking)



Early Systems

e Late 1940s to mid 1950s
e No Operating System
e Programs interact directly with hardware

e Two main problems:
—Scheduling
—Setup time



Simple Batch Systems

e Resident Monitor program
e Users submit jobs to operator
e Operator batches jobs

e Monitor controls sequence of events to process
batch

e When one job is finished, control returns to
Monitor which reads next job

e Monitor handles scheduling




Memory Layout for Resident Monitor
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Job Control Language

e Instructions to Monitor
o Usually denoted by $
e e.d.
—$JOB
—S$FTN
—. Some Fortran instructions
—S$LOAD
—$RUN
—_. Some data
—S$END



Other Desirable Hardware Features

e Memory protection
—To protect the Monitor
o Timer
—To prevent a job monopolizing the system

e Privileged instructions
—Only executed by Monitor

—e.g. I/O
e Interrupts
—Allows for relinquishing and regaining control



Multi-programmed Batch Systems

e I/O devices very slow

e When one program is waiting for I/O, another
can use the CPU
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Multi-Programming with
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Multi-Programming with
Three Programs
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Sample Program Execution Attributes

JOBI JOB2 JOB3
Type of job Heavy compute Heavy 1/O Heavy /O
Duration 5 min [5 min 10 min
Memory required SO0K 100 K RO K
Need disk? No No Yes
Need terminal? No Yes No

Need printer? No No Yes




Utilization
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Effects of Multiprogramming
on Resource Utilization

Uniprogramming Multiprogramming
Processor use 22% 43%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput rate 6 jobs/hr 12 jobs/hr

Mean response time I8 min 10 min




Time Sharing Systems

e Allow users to interact directly with the
computer

—1I.e. Interactive

e Multi-programming allows a number of users to
interact with the computer



Scheduling

e Key to multi-programming
e Long term

e Medium term

e Short term

e I/O



Long Term Scheduling

e Determines which programs are submitted for
processing

e j.e. controls the degree of multi-programming

e Once submitted, a job becomes a process for
the short term scheduler

e (or it becomes a swapped out job for the
medium term scheduler)



Medium Term Scheduling

o Part of the swapping function (more later...)

e Usually based on the need to manage multi-
programming

e If no virtual memory, memory management is
also an issue



Short Term Scheduler

e Dispatcher

* Fine grained decisions of which job to execute
next

e i.e. which job actually gets to use the processor
in the next time slot



Five-State Process Model
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Process Control Block

o Identifier

e State

e Priority

e Program counter

e Memory pointers

e Context data

o /O status

e Accounting information
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Key Elements of O/S
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Memory Management

e Uni-program
—Memory split into two
—One for Operating System (monitor)
—One for currently executing program
e Multi-program

—"User” part is sub-divided and shared among active
processes



Swapping

e Problem: I/O is so slow compared with CPU
that even in multi-programming system, CPU
can be idle most of the time

e Solutions:

—Increase main memory
— Expensive
— Leads to larger programs

—Swapping



What is Swapping?

e Long term queue of processes stored on disk

e Processes “swapped” in as space becomes
available

e As a process completes it is moved out of main
memory

e If none of the processes in memory are ready
(i.e. all I/O blocked)
—Swap out a blocked process to intermediate queue
—Swap in a ready process or a Nnew process
—But swapping is an I/O process...



Partitioning

e Splitting memory into sections to allocate to
processes (including Operating System)

e Fixed-sized partitions
—May not be equal size

—Process is fitted into smallest hole that will take it
(best fit)

—Some wasted memory
—Leads to variable sized partitions
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Variable Sized Partitions (1)

o Allocate exactly the required memory to a
process

e This leads to a hole at the end of memory, too
small to use

—Only one small hole - less waste

e When all processes are blocked, swap out a
process and bring in another

e New process may be smaller than swapped out
process

e Another hole



Variable Sized Partitions (2)

e Eventually have lots of holes (fragmentation)

e Solutions:
—~Coalesce - Join adjacent holes into one large hole

—Compaction - From time to time go through memory
and move all hole into one free block (c.f. disk de-
fragmentation)
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Relocation

* No guarantee that process will load into the
same place in memory

e Instructions contain addresses
—Locations of data
—Addresses for instructions (branching)

e Logical address - relative to beginning of
Drogram

e Physical address - actual location in memory
(this time)

e Automatic conversion using base address




Paging

Split memory into equal sized, small chunks -
page frames

Split programs (processes) into equal sized
small chunks - pages

Allocate the required number page frames to a
process

Operating System maintains list of free frames

A process does not require contiguous page
frames

Use page table to keep track
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Virtual Memory

e Demand paging
—Do not require all pages of a process in memory
—Bring in pages as required

e Page fault
—Required page is not in memory
—Operating System must swap in required page
—May need to swap out a page to make space
—Select page to throw out based on recent history



Thrashing

e Too many processes in too little memory

e Operating System spends all its time swapping
e Little or no real work is done

e Disk light is on all the time

e Solutions
—Good page replacement algorithms
—Reduce number of processes running
—Fit more memory



Bonus

We do not need all of a process in memory for it
to run

We can swap in pages as required

So - we can how run processes that are bigger
than total memory available!

Main memory is called real memory

User/programmer sees much bigger memory -
virtual memory



Inverted Page Table Structure
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Translation Lookaside Buffer

e Every virtual memory reference causes two
physical memory access
—Fetch page table entry
—Fetch data

e Use special cache for page table
—TLB



TLB Operation
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TLB and Cache Operation
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Segmentation

e Paging is not (usually) visible to the
programmer

e Segmentation is visible to the programmer

e Usually different segments allocated to program
and data

e May be a number of program and data
segments



Advantages of Segmentation

o Simplifies handling of growing data structures

e Allows programs to be altered and recompiled
independently, without re-linking and re-loading

e Lends itself to sharing among processes
e Lends itself to protection

e Some systems combine segmentation with
paging




Pentium |1l

e Hardware for segmentation and paging

e Unsegmented unpaged
— virtual address = physical address
— Low complexity
— High performance

e Unsegmented paged
— Memory viewed as paged linear address space
— Protection and management via paging
— Berkeley UNIX

Segmented unpaged
— Collection of local address spaces
— Protection to single byte level
— Translation table needed is on chip when segment is in memory

Segmented paged

— Segmentation used to define logical memory partitions subject to
access control

— Paging manages allocation of memory within partitions
— Unix System V
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Pentium |l Segmentation

e Each virtual address is 16-bit segment and 32-
bit offset

e 2 bits of segment are protection mechanism
e 14 bits specify segment
e Unsegmented virtual memory 232 = 4Gbytes

e Segmented 24=64 terabytes
—Can be larger — depends on which process is active
—Half (8K segments of 4Gbytes) is global
—Half is local and distinct for each process



Pentium Il Protection

e Protection bits give 4 levels of privilege
—0 most protected, 3 least
—Use of levels software dependent

—Usually level 3 for applications, level 1 for O/S and
level O for kernel (level 2 not used)

—Level 2 may be used for apps that have internal
security e.g. database

—Some instructions only work in level 0



Pentium |l Paging

e Segmentation may be disabled
—In which case linear address space is used

e Two level page table lookup

—First, page directory
— 1024 entries max
— Splits 4G linear memory into 1024 page groups of 4Mbyte

— Each page table has 1024 entries corresponding to 4Kbyte
pages

— Can use one page directory for all processes, one per
process or mixture

— Page directory for current process always in memory
—Use TLB holding 32 page table entries
—Two page sizes available 4k or 4M



PowerPC Memory Management
Hardware

e 32 bit — paging with simple segmentation
—64 bit paging with more powerful segmentation

e Or, both do block address translation
—Map 4 large blocks of instructions & 4 of memory to
bypass paging
—e.g. OS tables or graphics frame buffers

e 32 bit effective address

—12 bit byte selector
— =4kbyte pages

—16 bit page id
— 64k pages per segment

—4 bits indicate one of 16 segment registers
— Segment registers under OS control



PowerPC 32-bit Memory Management
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PowerPC 32-bit Address Translation
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