William Stallings
Computer Organization
and Architecture

6th Edition

Chapter 8
Operating System Support

Dr. Muazzam A. Khan

Objectives and Functions

e Convenience
—Making the computer easier to use
o Efficiency
—Allowing better use of computer resources

Layers and Views of a Computer System

End
User

Programmer
Application Programs Operating-
System
le Designer
Utilities
4
Operating System
%
Computer Hardware
V

Operating System Services

e Program creation

e Program execution

o Access to I/O devices

e Controlled access to files

e System access

e Error detection and response
e Accounting

O/S as a Resource Manager

Computer System

1/0 Devices
Memory
Operating 1/0 Controllert* =O Printers,
System keyboards,
Fiw digital camera,

Software 1O Controllery* =: ' ete.

- -
Programs . .
and Data . .

1/O Controllerp+

Processor - - - Processor

Types of Operating System

e Interactive

e Batch

e Single program (Uni-programming)
e Multi-programming (Multi-tasking)

Early Systems

e Late 1940s to mid 1950s
e No Operating System
e Programs interact directly with hardware

e Two main problems:
—Scheduling
—Setup time

Simple Batch Systems

e Resident Monitor program
e Users submit jobs to operator
e Operator batches jobs

e Monitor controls sequence of events to process
batch

e When one job is finished, control returns to
Monitor which reads next job

e Monitor handles scheduling

Memory Layout for Resident Monitor

(Interrupt
Processing

Device
Drivers

Monitor -<
Job

Sequencing

[Control Language
Interpreter

Boundary ——p \

User
Program
Artea

Job Control Language

e Instructions to Monitor
o Usually denoted by $
e e.d.
—$JOB
—S$FTN
—. Some Fortran instructions
—S$LOAD
—$RUN
—_. Some data
—S$END

Other Desirable Hardware Features

e Memory protection
—To protect the Monitor
o Timer
—To prevent a job monopolizing the system

e Privileged instructions
—Only executed by Monitor

—e.g. I/O
e Interrupts
—Allows for relinquishing and regaining control

Multi-programmed Batch Systems

e I/O devices very slow

e When one program is waiting for I/O, another
can use the CPU

Single Program

Run

Wait

Run

Wait

Time

Multi-Programming with
Two Programs

Program A

Program B

Combined

Run Wait Run Wait
Wait| Run Wait Run Wait
Run | Run . Run | Run .
A B Wait A B Wait
Time -

Multi-Programming with
Three Programs

Program A

Program B

Program C

Combined

Run Wait Run Wait

Wait| Run Wait Run Wait
7 _ /fx”’f _

Wait FRun’ Wait -Run Wait
] e

Run | Run [Run’ . Run | Run jﬁili‘lf’j .

AlBbcg M alBfcg W
Time I

Sample Program Execution Attributes

JOBI JOB2 JOB3
Type of job Heavy compute Heavy 1/O Heavy /O
Duration 5 min [5 min 10 min
Memory required SO0K 100 K RO K
Need disk? No No Yes
Need terminal? No Yes No

Need printer? No No Yes

Utilization

= 10

CPLU
[L

I I I = 1%
M emory
Mgl

I I I I = 1%
Terminal
Printer

Jub History J0B1 | JOB2 : | jDIBE
L[] 5 110 15 20 25 ||
minnies
—
e

CruU

Memory

Dk

Terminal

Printer

Juob History

1005

0%

.

0%

= 1005

= {150

= 1005

{b) Multiprograminihg

mﬂ%
= 1005
= {1 5%
e I
JOB1
J10B2
JOB3
[| |
L[] 5 11 15
mihmics

Effects of Multiprogramming
on Resource Utilization

Uniprogramming Multiprogramming
Processor use 22% 43%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput rate 6 jobs/hr 12 jobs/hr

Mean response time I8 min 10 min

Time Sharing Systems

e Allow users to interact directly with the
computer

—1I.e. Interactive

e Multi-programming allows a number of users to
interact with the computer

Scheduling

e Key to multi-programming
e Long term

e Medium term

e Short term

e I/O

Long Term Scheduling

e Determines which programs are submitted for
processing

e j.e. controls the degree of multi-programming

e Once submitted, a job becomes a process for
the short term scheduler

e (or it becomes a swapped out job for the
medium term scheduler)

Medium Term Scheduling

o Part of the swapping function (more later...)

e Usually based on the need to manage multi-
programming

e If no virtual memory, memory management is
also an issue

Short Term Scheduler

e Dispatcher

* Fine grained decisions of which job to execute
next

e i.e. which job actually gets to use the processor
in the next time slot

Five-State Process Model

Dispatch

Halted

Timeout

Blocked

Waiting

Process Control Block

o Identifier

e State

e Priority

e Program counter

e Memory pointers

e Context data

o /O status

e Accounting information

PCB Diagram

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0) status
information

Accounting
information

Key Elements of O/S

Service Call
from Process

Interrupt
from Process

Interrupt
from /()

Operating System
Service
—* Call
Handler (code)
Long- Short- 1/O
_..
Interrupt Term Term Queues
Handler (code) Quene Quene
_h
Short-Term
Scheduler
{eode)
¥
Pass Control

to Process

Process Scheduling

Admit

Long-term
quene

sShort-term
{uewne

/01
Oecurs

1702
(ccurs

/O m
Oecurs

Frocissor

End

170y 1 Quene

1/ 2 Quene

1A n Quene

Memory Management

e Uni-program
—Memory split into two
—One for Operating System (monitor)
—One for currently executing program
e Multi-program

—"User” part is sub-divided and shared among active
processes

Swapping

e Problem: I/O is so slow compared with CPU
that even in multi-programming system, CPU
can be idle most of the time

e Solutions:

—Increase main memory
— Expensive
— Leads to larger programs

—Swapping

What is Swapping?

e Long term queue of processes stored on disk

e Processes “swapped” in as space becomes
available

e As a process completes it is moved out of main
memory

e If none of the processes in memory are ready
(i.e. all I/O blocked)
—Swap out a blocked process to intermediate queue
—Swap in a ready process or a Nnew process
—But swapping is an I/O process...

Partitioning

e Splitting memory into sections to allocate to
processes (including Operating System)

e Fixed-sized partitions
—May not be equal size

—Process is fitted into smallest hole that will take it
(best fit)

—Some wasted memory
—Leads to variable sized partitions

Fixed
Partitioning

Operating System
M

(a) Equal-size partitions

Operating System
EM

M

4M

6 M

(b)) Unequal-size partilions

Variable Sized Partitions (1)

o Allocate exactly the required memory to a
process

e This leads to a hole at the end of memory, too
small to use

—Only one small hole - less waste

e When all processes are blocked, swap out a
process and bring in another

e New process may be smaller than swapped out
process

e Another hole

Variable Sized Partitions (2)

e Eventually have lots of holes (fragmentation)

e Solutions:
—~Coalesce - Join adjacent holes into one large hole

—Compaction - From time to time go through memory
and move all hole into one free block (c.f. disk de-
fragmentation)

iperafing

I Sysbem

}IE"I‘-}

:P"i':h"\.h:
e}
Crperatimg,
Svsiem
Proscess 1 NK
20K
Prowcess 3 2HEK
fd K

e}

Uipermiing
Svsiem

Prosess 1

()

UFperaiing
Syvsiem

Proscess 1

Priscess 4

Proscess 3

(i

120K

STtk

120K

125K
k]

2HHK

nd K

Urpernting
Svsiem

Proscess 1

Mriscess 2

ich

C¥peratinge
Hystem

Priscess 4

Process 3

(&)

Effect of Dynamic Partitioning

20K

234K

192K

20K

128K

ek

2RHK

hd kK

Uperniing
Svsiem

Proscess 1

riscess 2

Proecess 3

(d)

UFperaiing
Svsiem

Proscess 2

Priscess 4

Proecess 3

(hi

120K

234K

2HEK

kK

MK

L
128K

Sk

2HEK

K

Relocation

* No guarantee that process will load into the
same place in memory

e Instructions contain addresses
—Locations of data
—Addresses for instructions (branching)

e Logical address - relative to beginning of
Drogram

e Physical address - actual location in memory
(this time)

e Automatic conversion using base address

Paging

Split memory into equal sized, small chunks -
page frames

Split programs (processes) into equal sized
small chunks - pages

Allocate the required number page frames to a
process

Operating System maintains list of free frames

A process does not require contiguous page
frames

Use page table to keep track

Logical and Physical Addresses - Paging

Main
Memory
Page 0
: 13
of A
page relative address page relative address i P'Hgtl
|||1|I!§r “ylill g rmll'll{ wi'llflin lrame of A 14
Logical Physical Page 2
Address| 1 [30 Address | 14]30 ofa | ©
A
16
13 17
— 14
15 Pﬂfi 3 18
18 L1
Process A

Page Table

Virtual Memory

e Demand paging
—Do not require all pages of a process in memory
—Bring in pages as required

e Page fault
—Required page is not in memory
—Operating System must swap in required page
—May need to swap out a page to make space
—Select page to throw out based on recent history

Thrashing

e Too many processes in too little memory

e Operating System spends all its time swapping
e Little or no real work is done

e Disk light is on all the time

e Solutions
—Good page replacement algorithms
—Reduce number of processes running
—Fit more memory

Bonus

We do not need all of a process in memory for it
to run

We can swap in pages as required

So - we can how run processes that are bigger
than total memory available!

Main memory is called real memory

User/programmer sees much bigger memory -
virtual memory

Inverted Page Table Structure

Yirtual Address
Page # | OfTset

Page Table
Page # Entry Chain

{hash)

Frame #

¥

Frame #| OlTsel

Hash Table Inverted Page Table Real Address

Translation Lookaside Buffer

e Every virtual memory reference causes two
physical memory access
—Fetch page table entry
—Fetch data

e Use special cache for page table
—TLB

TLB Operation

Helnrn o
Eauliel Insirnetion

CFLU Activales
By H il ware

]

1

]

]

]

1

]

1

]

]

]

]

! Fage Transferted
! Tram Iiisk Lo
: Maln Memaoty
]

]

]

1

]

]

]

1

]

1

]

1

TLB and Cache Operation

TLB Operation
Virimal Address
l v
8 | Offset
T - TLE
T[¥ miss |
TLE
hit Cache Operation
Keal Address
[L
hJ T . v
:-é | 150 | Kemnnhder Cache
"l-—-__'l\rr-_-—-_ll'
Miss 7]
Page Table

Hit

Value
-

h

Main
Memory

Value

Segmentation

e Paging is not (usually) visible to the
programmer

e Segmentation is visible to the programmer

e Usually different segments allocated to program
and data

e May be a number of program and data
segments

Advantages of Segmentation

o Simplifies handling of growing data structures

e Allows programs to be altered and recompiled
independently, without re-linking and re-loading

e Lends itself to sharing among processes
e Lends itself to protection

e Some systems combine segmentation with
paging

Pentium |1l

e Hardware for segmentation and paging

e Unsegmented unpaged
— virtual address = physical address
— Low complexity
— High performance

e Unsegmented paged
— Memory viewed as paged linear address space
— Protection and management via paging
— Berkeley UNIX

Segmented unpaged
— Collection of local address spaces
— Protection to single byte level
— Translation table needed is on chip when segment is in memory

Segmented paged

— Segmentation used to define logical memory partitions subject to
access control

— Paging manages allocation of memory within partitions
— Unix System V

Pentium Il Address Translation
Mechanism

Logcal Address
S egment Offset

Linear Address
[t Fage Hfzet

| Physical
! ? | Address

Segment
Table
-
Page Page
[Mrectory Tahle /'_"‘\.‘-J
Main Memory
Segmentation Faging

|
|
|
|
|
|
—- |
|
|
|
|
|
|

Pentium |l Segmentation

e Each virtual address is 16-bit segment and 32-
bit offset

e 2 bits of segment are protection mechanism
e 14 bits specify segment
e Unsegmented virtual memory 232 = 4Gbytes

e Segmented 24=64 terabytes
—Can be larger — depends on which process is active
—Half (8K segments of 4Gbytes) is global
—Half is local and distinct for each process

Pentium Il Protection

e Protection bits give 4 levels of privilege
—0 most protected, 3 least
—Use of levels software dependent

—Usually level 3 for applications, level 1 for O/S and
level O for kernel (level 2 not used)

—Level 2 may be used for apps that have internal
security e.g. database

—Some instructions only work in level 0

Pentium |l Paging

e Segmentation may be disabled
—In which case linear address space is used

e Two level page table lookup

—First, page directory
— 1024 entries max
— Splits 4G linear memory into 1024 page groups of 4Mbyte

— Each page table has 1024 entries corresponding to 4Kbyte
pages

— Can use one page directory for all processes, one per
process or mixture

— Page directory for current process always in memory
—Use TLB holding 32 page table entries
—Two page sizes available 4k or 4M

PowerPC Memory Management
Hardware

e 32 bit — paging with simple segmentation
—64 bit paging with more powerful segmentation

e Or, both do block address translation
—Map 4 large blocks of instructions & 4 of memory to
bypass paging
—e.g. OS tables or graphics frame buffers

e 32 bit effective address

—12 bit byte selector
— =4kbyte pages

—16 bit page id
— 64k pages per segment

—4 bits indicate one of 16 segment registers
— Segment registers under OS control

PowerPC 32-bit Memory Management
Formats

Segment Fage Byle

{a) Bffective address

i1 24425/ 2% 3l

W Vinual Segment 1D (V511 H APl

Keal Page Mumber gl WIMG PR

YV = Bniry vahd bu K = Referenced b1t = reserved
H = Hash hmction identifier C = Changed b1t
APl = Abbreviated page imndex WIMSG = Cache and starage access conitrol biis

FF = Page protection biis
{h) Page Table Eniry

Heal Page Mumber Byite Offset

{¢) Beal address

PowerPC 32-bit Address Translation

32-bit effective address

3 Page Byle
e
16 // 12
16 Segment Registers
24
52-bit
virtual address L J L 4
Wirtual Segrent [T Wirtual Page Nurmber Byle
S — N
W 12|,
.\._._-—-—__-'\,I—F-——-—-___.')k.__._-—-—-‘yﬂ_—-—-_._,.)
| 19
16 |
Page Table
Hash

Wirtual Segment [T API

Eed Page Number

32-bit 20
real address

Real Page Number Byvle

Recommended Reading

o Stallings, W. Operating Systems, Internals and
Design Principles, Prentice Hall 1998

e Loads of Web sites on Operating Systems

