
William Stallings

Computer Organization

and Architecture

6
th

 Edition

Chapter 8

Operating System Support

 Dr. Muazzam A. Khan

Objectives and Functions

• Convenience

—Making the computer easier to use

• Efficiency

—Allowing better use of computer resources

Layers and Views of a Computer System

Operating System Services

• Program creation

• Program execution

• Access to I/O devices

• Controlled access to files

• System access

• Error detection and response

• Accounting

O/S as a Resource Manager

Types of Operating System

• Interactive

• Batch

• Single program (Uni-programming)

• Multi-programming (Multi-tasking)

Early Systems

• Late 1940s to mid 1950s

• No Operating System

• Programs interact directly with hardware

• Two main problems:

—Scheduling

—Setup time

Simple Batch Systems

• Resident Monitor program

• Users submit jobs to operator

• Operator batches jobs

• Monitor controls sequence of events to process
batch

• When one job is finished, control returns to
Monitor which reads next job

• Monitor handles scheduling

Memory Layout for Resident Monitor

Job Control Language

• Instructions to Monitor

• Usually denoted by $

• e.g.

—$JOB

—$FTN

—... Some Fortran instructions

—$LOAD

—$RUN

—... Some data

—$END

Other Desirable Hardware Features

• Memory protection

—To protect the Monitor

• Timer

—To prevent a job monopolizing the system

• Privileged instructions

—Only executed by Monitor

—e.g. I/O

• Interrupts

—Allows for relinquishing and regaining control

Multi-programmed Batch Systems

• I/O devices very slow

• When one program is waiting for I/O, another
can use the CPU

Single Program

Multi-Programming with

Two Programs

Multi-Programming with

Three Programs

Sample Program Execution Attributes

Utilization

Effects of Multiprogramming

on Resource Utilization

Time Sharing Systems

• Allow users to interact directly with the
computer

—i.e. Interactive

• Multi-programming allows a number of users to
interact with the computer

Scheduling

• Key to multi-programming

• Long term

• Medium term

• Short term

• I/O

Long Term Scheduling

• Determines which programs are submitted for
processing

• i.e. controls the degree of multi-programming

• Once submitted, a job becomes a process for
the short term scheduler

• (or it becomes a swapped out job for the
medium term scheduler)

Medium Term Scheduling

• Part of the swapping function (more later…)

• Usually based on the need to manage multi-
programming

• If no virtual memory, memory management is
also an issue

Short Term Scheduler

• Dispatcher

• Fine grained decisions of which job to execute
next

• i.e. which job actually gets to use the processor
in the next time slot

Five-State Process Model

Waiting

Halted

Process Control Block

• Identifier

• State

• Priority

• Program counter

• Memory pointers

• Context data

• I/O status

• Accounting information

PCB Diagram

Key Elements of O/S

Process Scheduling

Memory Management

• Uni-program

—Memory split into two

—One for Operating System (monitor)

—One for currently executing program

• Multi-program

—―User‖ part is sub-divided and shared among active
processes

Swapping

• Problem: I/O is so slow compared with CPU
that even in multi-programming system, CPU
can be idle most of the time

• Solutions:

—Increase main memory

– Expensive

– Leads to larger programs

—Swapping

What is Swapping?

• Long term queue of processes stored on disk

• Processes ―swapped‖ in as space becomes
available

• As a process completes it is moved out of main
memory

• If none of the processes in memory are ready
(i.e. all I/O blocked)

—Swap out a blocked process to intermediate queue

—Swap in a ready process or a new process

—But swapping is an I/O process...

Partitioning

• Splitting memory into sections to allocate to
processes (including Operating System)

• Fixed-sized partitions

—May not be equal size

—Process is fitted into smallest hole that will take it
(best fit)

—Some wasted memory

—Leads to variable sized partitions

Fixed

Partitioning

Variable Sized Partitions (1)

• Allocate exactly the required memory to a
process

• This leads to a hole at the end of memory, too
small to use

—Only one small hole - less waste

• When all processes are blocked, swap out a
process and bring in another

• New process may be smaller than swapped out
process

• Another hole

Variable Sized Partitions (2)

• Eventually have lots of holes (fragmentation)

• Solutions:

—Coalesce - Join adjacent holes into one large hole

—Compaction - From time to time go through memory
and move all hole into one free block (c.f. disk de-
fragmentation)

Effect of Dynamic Partitioning

Relocation

• No guarantee that process will load into the
same place in memory

• Instructions contain addresses

—Locations of data

—Addresses for instructions (branching)

• Logical address - relative to beginning of
program

• Physical address - actual location in memory
(this time)

• Automatic conversion using base address

Paging

• Split memory into equal sized, small chunks -
page frames

• Split programs (processes) into equal sized
small chunks - pages

• Allocate the required number page frames to a
process

• Operating System maintains list of free frames

• A process does not require contiguous page
frames

• Use page table to keep track

Logical and Physical Addresses - Paging

Virtual Memory

• Demand paging

—Do not require all pages of a process in memory

—Bring in pages as required

• Page fault

—Required page is not in memory

—Operating System must swap in required page

—May need to swap out a page to make space

—Select page to throw out based on recent history

Thrashing

• Too many processes in too little memory

• Operating System spends all its time swapping

• Little or no real work is done

• Disk light is on all the time

• Solutions

—Good page replacement algorithms

—Reduce number of processes running

—Fit more memory

Bonus

• We do not need all of a process in memory for it
to run

• We can swap in pages as required

• So - we can now run processes that are bigger
than total memory available!

• Main memory is called real memory

• User/programmer sees much bigger memory -
virtual memory

Inverted Page Table Structure

Translation Lookaside Buffer

• Every virtual memory reference causes two
physical memory access

—Fetch page table entry

—Fetch data

• Use special cache for page table

—TLB

TLB Operation

TLB and Cache Operation

Segmentation

• Paging is not (usually) visible to the
programmer

• Segmentation is visible to the programmer

• Usually different segments allocated to program
and data

• May be a number of program and data
segments

Advantages of Segmentation

• Simplifies handling of growing data structures

• Allows programs to be altered and recompiled
independently, without re-linking and re-loading

• Lends itself to sharing among processes

• Lends itself to protection

• Some systems combine segmentation with
paging

Pentium II

• Hardware for segmentation and paging

• Unsegmented unpaged
— virtual address = physical address

— Low complexity

— High performance

• Unsegmented paged
— Memory viewed as paged linear address space

— Protection and management via paging

— Berkeley UNIX

• Segmented unpaged
— Collection of local address spaces

— Protection to single byte level

— Translation table needed is on chip when segment is in memory

• Segmented paged
— Segmentation used to define logical memory partitions subject to

access control

— Paging manages allocation of memory within partitions

— Unix System V

Pentium II Address Translation

Mechanism

Pentium II Segmentation

• Each virtual address is 16-bit segment and 32-
bit offset

• 2 bits of segment are protection mechanism

• 14 bits specify segment

• Unsegmented virtual memory 232 = 4Gbytes

• Segmented 246=64 terabytes

—Can be larger – depends on which process is active

—Half (8K segments of 4Gbytes) is global

—Half is local and distinct for each process

Pentium II Protection

• Protection bits give 4 levels of privilege

—0 most protected, 3 least

—Use of levels software dependent

—Usually level 3 for applications, level 1 for O/S and
level 0 for kernel (level 2 not used)

—Level 2 may be used for apps that have internal
security e.g. database

—Some instructions only work in level 0

Pentium II Paging

• Segmentation may be disabled

—In which case linear address space is used

• Two level page table lookup

—First, page directory

– 1024 entries max

– Splits 4G linear memory into 1024 page groups of 4Mbyte

– Each page table has 1024 entries corresponding to 4Kbyte
pages

– Can use one page directory for all processes, one per
process or mixture

– Page directory for current process always in memory

—Use TLB holding 32 page table entries

—Two page sizes available 4k or 4M

PowerPC Memory Management

Hardware

• 32 bit – paging with simple segmentation

—64 bit paging with more powerful segmentation

• Or, both do block address translation

—Map 4 large blocks of instructions & 4 of memory to
bypass paging

—e.g. OS tables or graphics frame buffers

• 32 bit effective address

—12 bit byte selector

– =4kbyte pages

—16 bit page id

– 64k pages per segment

—4 bits indicate one of 16 segment registers

– Segment registers under OS control

PowerPC 32-bit Memory Management

Formats

PowerPC 32-bit Address Translation

Recommended Reading

• Stallings, W. Operating Systems, Internals and
Design Principles, Prentice Hall 1998

• Loads of Web sites on Operating Systems

