Lecture 12

EE-215 Electronic Devices and Circuits

Asst Prof Muhammad Anis Chaudhary

Small-Signal Operation and Models

- Thus for a BJT amplifier, linear amplification can be achieved by
 - o biasing the BJT to operate in the active region
 - o and by keeping the input signal small
- for the conceptual amplifier circuit shown in fig
 - \circ here the base-emitter junction is forward-biased by a dc voltage V_{BE}
 - the reverse-bias of the collector-base junction is achieved by connecting
 - lacktriangle the collector to another power supply of voltage V_{CC} through a resistor R_C
 - lacktriangle the input signal to be amplified v_{be} is superimposed on the dc bias voltage V_{BE}
 - lacksquare let's first consider the dc bias conditions by setting the signal $v_{be}=0$

• thus the dc currents and voltages can be given as

$$\begin{split} \circ \ I_C &= I_S e^{V_{BE}/V_T} \\ \bullet \ I_E &= I_C/\alpha \\ \bullet \ I_B &= I_C/\beta \\ \bullet \ V_{CE} &= V_{CC} - I_C R_C \end{split}$$

- lacksquare Note that for active-mode operation, V_C should be greater than $(V_B-0.4)$ by an amount
 - that allows for the required signal swing at the collector

The Collector Current and the Transconductance

ullet Now if a signal v_{be} is applied, the total instantaneous base-emitter voltage is

$$\circ \ v_{BE} = V_{BE} + v_{be}$$

lacksquare and the total instantaneous collector current i_C is

$$egin{aligned} ullet i_C &= I_S e^{v_{BE}/V_T} = I_S e^{(V_{BE}+v_{be})/V_T} \ ullet i_C &= I_S e^{V_{BE}/V_T} e^{v_{be}/V_T} \end{aligned}$$

$$ullet i_C = I_S e^{V_{BE}/V_T} e^{v_{be}/V_T}$$

$$lacksquare$$
 As $I_C=I_S e^{V_{BE}/V_T}$

$$lacksquare = \Rightarrow i_C = I_C e^{v_{be}/V_T}$$

o As in terms of series, exponential can be represented as

$$ullet e^x = \sum_{n=0}^\infty rac{x^n}{n!} = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + rac{x^4}{4!} + \cdots$$

$$ullet = = i_C = I_C e^{v_{be}/V_T} = I_C igg(1 + rac{v_{be}}{V_T} + rac{1}{2!} igg(rac{v_{be}}{V_T}igg)^2 + \cdotsigg)$$

$$ullet i_C = I_C e^{v_{be}/V_T} = I_C igg(1 + rac{v_{be}}{V_T} + rac{1}{2!} igg(rac{v_{be}}{V_T}igg)^2 + \cdotsigg)$$

 \circ now if the amplitude of the signal v_{be} is kept sufficiently small i.e. $v_{be} < V_T$ or $rac{v_{be}}{V_T} < 1$

$$=$$
 \Rightarrow $\left(rac{v_{be}}{V_T}
ight)^2 < rac{v_{be}}{V_T}$

$$lacktriangledown$$
 thus we can retain only the 1st two terms, when $v_{be} < V_T$ $lacktriangledown = \Rightarrow i_C = I_C igg(1 + rac{v_{be}}{V_T} + rac{1}{2!} igg(rac{v_{be}}{V_T}igg)^2 + \cdotsigg) pprox I_C igg(1 + rac{v_{be}}{V_T}igg)$

• this is the small signal approximation.

o and under this approximation, the total collector current is

$$\circ i_Cpprox I_C \Big(1+rac{v_{be}}{V_T}\Big) = I_C+rac{I_C}{V_T}v_{be}$$

 \circ i.e. the collector current is composed of the dc bias value I_C and a signal component i_c ,

2 of 14

$$lacksquare$$
 where $i_c=rac{I_C}{V_T}v_{be}$

$$ullet i_c = rac{I_C}{V_T} v_{be}$$

o thus the signal current in the collector is proportional to the corresponding base-emitter

$$lacksquare$$
 i.e. $i_c=g_mv_{be}$ where $g_m=rac{I_C}{V_T}$

- o g_m is called the transconductor and is given as $g_m = rac{I_C}{V_T}$
- o thus the transconductance of the BJT is directly proportional to the collector bias current
- Note that BJTs have relatively high transconductance as compared to MOSFETs (for a MOSFET, $g_m = rac{I_D}{V_{OV}/2}$) e.g. at $I_C = 1mA$, $g_m = 40mA/V$
- \bullet Graphical interpretation for g_m is as shown in figure
 - \circ Note that g_m is equal to the slope of the i_C-v_{BE} characteristic at the bias point Q

$$ullet$$
 i.e. $g_m=\left.rac{\partial i_C}{\partial v_{BE}}
ight|_{i_C=I_C}$ as $i_C=I_S e^{v_{BE}/V_T}$

$$lacksquare$$
 as $i_C=I_Se^{v_{BE}/V_T}$

$$\blacksquare \ g_m = . \ \frac{\partial i_C}{\partial v_{BE}}\Big|_{i_C = I_C} = . \ \frac{\partial}{\partial v_{BE}}\Big[I_S e^{v_{BE}/V_T}\Big]\Big|_{i_C = I_C} = . \ I_S \frac{\partial}{\partial v_{BE}}\Big[e^{v_{BE}/V_T}\Big]\Big|_{i_C = I_C}$$

$$\circ \: g_m = \left. .\: I_S e^{v_{BE}/V_T} rac{\partial}{\partial v_{BE}} \Big[v_{BE}/V_T \Big]
ight|_{i_C = I_C} = \left. .\: i_C rac{\partial}{\partial v_{BE}} \Big[v_{BE}/V_T \Big]
ight|_{i_C = I_C}$$

$$ullet g_m = \left. egin{array}{c} rac{i_C}{V_T}
ight|_{i_C = I_C} = rac{I_C}{V_T} \end{array}$$

- thus the small-signal approximation implies
 - keeping the signal amplitude sufficiently small that
 - operation is restricted to an almost-linear segment of
 - the $i_C v_{BE}$ exponential curve.

The Base Current and the Input Resistance at the Base

- ullet to determine the resistance seen by v_{be} , first we need to determine the total base current i_B
 - \circ as $i_B=rac{\imath_C}{\beta}$
 - \circ using $i_C = I_C + rac{I_C}{V_T} v_{be}$
 - $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} &= rac{I_C}{eta} = rac{I_C}{eta} = rac{I_C}{eta} + rac{1}{eta} rac{I_C}{V_T} v_{be} \end{aligned}$
 - - lacksquare where $I_B=rac{I_C}{eta}$ and i_b is the signal component
 - ullet i.e. $i_b=rac{1}{eta}rac{I_C}{V_T}v_{be}=rac{g_m}{eta}v_{be}$: $g_m=rac{I_C}{V_T}$
 - \circ thus $i_b=rac{g_m}{eta}v_{be}$
 - o The small-signal input resistance between base and emitter, looking into the base is denoted by r_π and is defined as
- ullet using $i_b=rac{g_m}{eta}v_{be}$
 - o $r_{\pi}=rac{v_{be}}{i_{b}}=rac{v_{be}}{rac{g_{m}}{a}v_{be}}=rac{eta}{g_{m}}$
 - \circ thus r_π is directly proportional to eta and is inversely proportional to g_m
 - \circ As $g_m = \frac{I_C}{V}$
 - $lacksquare = \Rightarrow r_\pi = rac{eta}{a_m} = rac{eta V_T}{I_C} = rac{V_T}{I_R} \because I_B = rac{I_C}{eta}$

The Emitter Current and the Input Resistance at the Emitter

- ullet the total emitter current i_E can be given as
 - $egin{array}{l} \circ i_E = rac{i_C}{lpha} = rac{I_C + i_c}{lpha} = rac{I_C}{lpha} + rac{i_c}{lpha} \ \circ = \, \Rightarrow \! i_E = I_E = i_e \end{array}$
 - - lacksquare where $I_E=rac{I_C}{lpha}$
 - lacksquare and the signal current $i_e=\frac{i_e}{c}$
 - \circ as $i_c=g_m v_{be}=rac{I_C}{V_m}v_{be}$
 - $ullet = \Rightarrow i_e = rac{i_c}{lpha} = rac{rac{i_C}{V_T}v_{be}}{lpha} = rac{1}{lpha}rac{I_C}{V_T}v_{be} = rac{I_C}{lpha}rac{1}{V_T}v_{be} = I_Erac{1}{V_T}v_{be}$ $\therefore I_E = I_C/lpha$
 - \circ thus $i_e=rac{I_E}{V_T}v_{be}$
 - o the small-signal resistance between base and emitter looking into the emitter is denoted by r_e and is defined as

$$lacksquare r_e = rac{v_{be}}{i_e}$$

- $ullet r_e = rac{v_{be}}{i}$
 - \circ as $i_e=rac{I_E}{V_T}v_{be}$
 - $ullet = \Rightarrow r_e = rac{v_{be}}{i_e} = rac{v_{be}}{rac{I_E}{V_-}v_{be}} = rac{V_T}{I_E}$
 - \circ as $I_E=rac{I_C}{lpha}$ and $g_m=rac{I_C}{V_m}$
 - $ullet = \Rightarrow r_e = rac{V_T}{I_E} = rac{lpha V_T}{I_C} = rac{lpha}{q_m}$
 - \circ thus $r_e=rac{V_T}{I_F}=rac{lpha}{a_{--}}$

 r_{π} and r_{e}

- ullet thus $r_\pi=rac{v_{be}}{i_b}=rac{eta}{g_m}=rac{V_T}{I_B}$ and $r_e=rac{v_{be}}{i_e}=rac{V_T}{I_E}=rac{lpha}{g_m}$
 - \circ from these relations, we can determine the relation between r_{π} and r_{e}

Handout 12, Asst Prof M Anis Ch, Electronic Devices and Circuits

Figure 6.38 Illustrating the definition of r_{π} and r_{e} .

$$egin{aligned} \circ ext{ i.e. } v_{be} &= i_b r_\pi = i_e r_e \ &lacksymbol{\blacksquare} &= \Rightarrow r_\pi = rac{i_e}{i_b} r_e \ &\circ ext{ as } rac{i_e}{i_b} &= rac{i_e}{1} rac{1}{i_b} = rac{i_c}{lpha} rac{eta}{i_c} = rac{i_c(eta+1)}{eta} rac{eta}{i_c} = eta+1 \ &lacksymbol{\blacksquare} &= \Rightarrow r_\pi = rac{i_e}{i_b} r_e = \Big(eta+1\Big) r_e \end{aligned}$$

Voltage Gain

$$ullet$$
 by KVL, $V_{CC}=i_CR_C+v_{CE}$

• the total instantaneous collector voltage is

$$lacksquare v_{CE} = V_{CC} - i_C R_C$$

 $ullet v_{CE} = V_{CC} - i_C R_C \ ullet$ under the small signal condition

$$lacksquare I_C = I_C + i_c$$

$$ullet = \Rightarrow v_{CE} = V_{CC} - i_C R_C = V_{CC} - (I_C + i_c) R_C$$

$$ullet v_{CE} = V_{CC} - I_C R_C - i_c R_C$$

$$\bullet$$
 $v_{CE} = (V_{CC} - I_C R_C) - i_c R_C$

$$\begin{array}{l} \bullet \ v_{CE} = V_{CC} - I_C R_C - i_c R_C \\ \bullet \ v_{CE} = (V_{CC} - I_C R_C) - i_c R_C \\ \bullet \ v_{CE} = V_{CE} - i_c R_C \because V_{CE} = V_{CC} - I_C R_C \\ \bullet \ \text{here} \ V_{CE} \ \text{is the dc bias voltage at the collector} \end{array}$$

•
$$v_{CE} = V_{CE} - i_c R_C$$

 $\circ = \; \Rightarrow$ the signal component of v_{CE} is

$$lacksquare v_{ce} = -i_c R_C$$

$$lacksymbol{lack}$$
 As $i_c=g_mv_{be}$

$$= \Rightarrow v_{ce} = -i_c R_C = -g_m v_{be} R_C$$

$$\bullet$$
 or $v_{ce} = (-g_m R_C) v_{be}$

lacktriangledown or $v_{ce}=(-g_mR_C)v_{be}$ the voltage gain of this amplifier A_v can be given as $lacktriangledown A_v=rac{v_{ce}}{v_{be}}=-g_mR_C$

$$ullet A_v = rac{v_{ce}}{v_{be}} = -g_m R_C$$

- \circ Note that the gain is proportional to g_m . As $g_m=rac{I_C}{V_T}$, thus stable gain can be achieved by making the collector bias current stable
- $ullet A_v = rac{v_{ce}}{v_{be}} = -g_m R_C$
 - \circ As $g_m=rac{I_C}{V_T}$

$$lacksquare = \Rightarrow A_v = rac{v_{ce}}{v_{be}} = -g_m R_C = -rac{I_C R_C}{V_T}$$

 \circ here the minus sign indicates that the output signal v_{ce} is 180^o out of phase w.r.t. the input signal v_{be}

Separating the Signal and the DC Quantities

- thus under the small-signal approximation,
 - o signal quatities are superimposed on dc quantities
 - o i.e. every current and voltage in the amplifier circuit is composed of
 - \blacksquare two components: a dc component and a signal component \blacksquare thus $v_{BE}=V_{BE}+v_{be}$, $i_C=I_C+i_c$, $i_E=I_E+i_e$, \blacksquare $i_B=I_B+i_b$ and $v_{CE}=V_{CE}+v_{ce}$
 - o thus we can simplify analysis by separating "dc calculations" from "small-signal or ac calculations"
 - o first we perform dc analysis by suppressing all ac sources, and determine the dc operating point
 - o for ac analysis, we suppress all dc sources,
 - i.e. dc voltage source is replaced by a short circuit
 - a dc current source is replaced by an open circuit

The Hybrid- π Model

- we have already seen that under the small-signal condition

 - $\circ~i_c=g_mv_{be}$ where $g_m=I_C/V_T$ $\circ~=\Rightarrow$ BJT behaves as a voltage controlled current source
 - lacksquare it accepts a signal v_{be} between base and the emitter
 - lacksquare and provides a current $g_m v_{be}$ at the collector terminal
 - o The small-signal input resistance between the base and emitter, looking into the base is
 - o the output resistance is infinite (if base-width modulation effect is neglected)
- thus the small-signal operation of the BIT can be represented by figure
 - \circ from this model, $i_c = g_m v_{be}$, $i_b = v_{be}/r_\pi$
 - o by KCL

$$egin{align} ullet i_e &= i_b + i_c = rac{v_{be}}{r_\pi} + g_m v_{be} \ ullet i_e &= \left(rac{1}{r_\pi} + g_m
ight) v_{be} = \left(1 + g_m r_\pi
ight) rac{v_{be}}{r_\pi} \ \end{split}$$

■ As
$$r_\pi = rac{eta}{g_m} = \Rightarrow g_m r_\pi = eta$$

$$\bullet i_e = \left(1 + g_m r_\pi\right) rac{v_{be}}{r_\pi} = \left(1 + eta\right) rac{v_{be}}{r_\pi}$$

$$\bullet \text{ but } r_\pi = (eta + 1) r_e \text{ or } rac{r_\pi}{\beta + 1} = r_e$$

B

$$i_b$$
 i_c
 C
 i_c
 C
 i_c
 C
 i_c
 i_c
 C
 i_c
 i_c

$$egin{aligned} ullet = & i_e = & \left(1 + eta
ight)rac{v_{be}}{r_\pi} = rac{v_{be}}{r_\pi/(1+eta)} = rac{v_{be}}{r_e} \end{aligned}$$

- · A slightly different equivalent-circuit model is obtained by
 - \circ expressing the current of the controlled source $(g_m v_{be})$ in terms of the base current i_b

 - \circ i.e. $i_c=g_mv_{be}=g_m(i_br_\pi)=(g_mr_\pi)i_b=eta i_b$: $r_\pi=eta/g_m$ \circ this results in an alternative equivalent-circuit model shown in fig (b)
 - o here the transistor is represented by a current-controlled current source, with the control current being i_b

- Note that these models (fig above) are small-signal versions of large signal models (fig below)
 - \circ Note that r_{π} is the incremental resistance of D_B

The T Model

- Another possible small-signal model for a BTT called the T-model is shown in figure
 - here the BJT is represented as a voltage-controlled current source
 - lacksquare with the control voltage being v_{be}
 - here the resistance between base and emitter, looking into the emitter is explicitly shown
 - lacksquare from the figure we can see that the model yields correct expressions for i_c , i_b
 - ullet i.e. $i_c=g_m v_{be}$, $i_e=v_{be}/r_e$

Handout 12, Asst Prof M Anis Ch, Electronic Devices and Circuits

and
$$i_b=i_e-i_c=\frac{v_{be}}{r_e}-g_mv_{be}=\left(\frac{1}{r_e}-g_m\right)v_{be}$$

$$g_m=I_C/V_T$$

$$r_e=\frac{V_T}{I_E}=\frac{\alpha}{g_m}$$
(a)

$$\bullet \ i_b = \left(\frac{1}{r_e} - g_m\right) v_{be}$$

$$\circ \ i_b = \left(\frac{1 - g_m r_e}{r_e}\right) v_{be} = \left(\frac{1 - \alpha}{r_e}\right) v_{be} \therefore r_e = \frac{\alpha}{g_m} \text{ or } g_m r_e = \alpha$$

$$\bullet \ i_b = \left(1 - \alpha\right) \frac{1}{r_e} v_{be} = \left(1 - \frac{\beta}{\beta + 1}\right) \frac{1}{r_e} v_{be}$$

$$\bullet \ i_b = \left(\frac{(\beta + 1) - \beta}{\beta + 1}\right) \frac{1}{r_e} v_{be} = \left(\frac{1}{\beta + 1}\right) \frac{1}{r_e} v_{be}$$

$$\bullet \ \text{As } r_\pi = (\beta + 1) r_e$$

$$\bullet \ = \Rightarrow i_b = \frac{1}{r_\pi} v_{be}$$

- A slightly different equivalent-circuit model is obtained by
 - \circ expressing the current of the controlled source $(g_m v_{be})$ in terms of the emitter current

 - \circ i.e. $i_c=g_mv_{be}=g_m(i_er_e)=(g_mr_e)i_e=lpha i_e$: $r_e=lpha/g_m$ \circ this results in an alternative equivalent-circuit model (T-model) shown in fig (b)
 - o here the BJT is represented by a current-controlled current source, with the control current being i_e

- Note that these small-signal models are small-signal versions of the large-signal models (fig below)
 - \circ and r_e is the incremental resistance of D_E

Small-Signal Models of the pnp Transistor

• for a pnp transistor,

The base-width modulation effect can be included by placing r_{O} between C and E

• Recall that for a pnp transistor, larger signal models can be given as

Figure 6.11 Two large-signal models for the *pnp* transistor operating in the active mode.

- \bullet Also the above small-signal models developed for npn transistors,
 - apply equally well to the pnp transistor with no change in polarities.
 - o to see why?

Augmenting the Small-signal Models to account for the Early Effect

- ullet because of Early effect, i_C depends not only on v_{BE} and also on v_{CE}
 - \circ i.e. $i_C = I_S e^{v_{BE}/V_T} \Big(1 + rac{v_{CE}}{V_A} \Big)$
 - As a consequence of Early effect, the output resistance looking into the collector is not infinite and can be given as
 - o $r_o=rac{V_A}{I_C}$
 - \circ where V_A is the Early voltage and I_C ' is the collector current with the Early effect neglected.
 - \circ The Early effect can be included in the small-signal models by placing r_o between the collector and the emitter terminals

 $_{o}$ Figure 6.47 The hybrid- π small-signal model, in its two versions, with the resistance r_{o} included.

Application of the Small-Signal Equivalent Circuits

- \bullet Thus in the analysis of a BJT amplifier circuit, we follow the following steps
 - 1. Suppress the signal sources and determine the dc operating point of the BJT (particularly the dc collector current, I_{C})
 - 2. Calculate the values of the small signal model parameters:

$$lacksquare$$
 i.e. $g_m=rac{I_C}{V_T}$, $r_\pi=rac{eta}{g_m}$, $r_e=rac{lpha}{g_m}$

- 3. Eliminate the dc sources by replacing each dc voltage source with a short-circuit and each current source with an open-circuit
- 4. Replace the BJT by its small-signal equivalent circuit model
- 5. Analyse the resulting circuit to determine the required signal quantities e.g. A_v , R_{in} etc.
- Table summarizes the small-signal models and relevant relations for a BJT
 - note that these small-signal models and relations apply equally well to both the npn and the pnp transistors with no change in polarities

Model Parameters in Terms of DC Bias Currents

$$g_m = \frac{I_C}{V_T}$$

$$r_e = \frac{V_T}{I_E} = \alpha \frac{V_T}{I_C}$$

$$r_e = rac{V_T}{I_F} = lpha rac{V_T}{I_C}$$
 $r_\pi = rac{V_T}{I_B} = eta rac{V_T}{I_C}$ $r_o = rac{|V_A|}{I_C}$

$$r_o = \frac{|V_A|}{I_C}$$

In Terms of g_m

$$r_e = \frac{\alpha}{g_m}$$

$$r_e = \frac{\alpha}{g_m} \qquad \qquad r_\pi = \frac{\beta}{g_m}$$

In Terms of r_e

$$g_m = \frac{\alpha}{r_e}$$

$$r_\pi = (\beta + 1)r_e$$

$$g_m + \frac{1}{r_\pi} = \frac{1}{r_e}$$

Relationships between α and β

$$\beta = \frac{\alpha}{1-\alpha}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{1-\alpha}$$
 $\alpha = \frac{\beta}{\beta+1}$ $\beta+1 = \frac{1}{1-\alpha}$

• for a pnp transistor,

Small signal models for a pnp transistor (a)Circuit Symbol (b)Hybrid- π Model (c)T model

The base-width modulation effect can be included by placing ro between C and E

Example 6.14

ullet Analyze the transistor amplifier shown in Fig 6.42(a) to determine its voltage gain v_o/v_i . Assume $\beta = 100$.

Example 6.16

ullet Analyze the transistor amplifier shown in Fig 6.44(a) to determine its voltage gain v_o/v_i . Assume eta=100.

