Lecture 14

EE-215 Electronic Devices and Circuits

Asst Prof Muhammad Anis Chaudhary

Biasing in BJT Amplifier Circuits

- \bullet we have already determined
 - In the design of a BJT amplifier circuit,
 - it is essential to establish an appropriate dc operating point (or Q point or bias point) for the BJT
 - This step is known as biasing or bias design
 - An appropriate bias point or dc operating point is characterized by
 - lacksquare a stable and predictable dc collector current I_C and
 - by a dc collector-to-emitter voltage V_{CE} that ensures operation in the active region for all expected input signal levels

Biasing by Fixing V_{BE} or Biasing by Fixing I_B

- Two obvious schemes for biasing the BJT are
 - 1. Biasing by fixing V_{BE}
 - 2. Biasing by fixing I_B
 - \circ Both these schemes result in wide variations in I_C and hence in V_{CE}
 - and are therefore not recomended for practical amplifiers

Biasing by Fixing V_{BE}

- in this case BJT is biased by fixing its V_{BE}
 - \circ This voltage V_{BE} can be easily derived from the power-supply V_{CC}
 - by using an appropriate voltage divider
 - however, this way of biasing a BJT is not a viable approach
 - because the very sharp exponetial relationship $i_C v_{BE}$ means that any small and inevitable differences in V_{BE} from the desired value will result in large differences in I_C and in V_{CE}

Biasing by Fixing I_B

- in this case BJT is biased by establishing a constant current in the base, I_B

here by ohms' law

- $I_B = rac{V_{CC} V_{BE}}{R_B} pprox rac{V_{CC} 0.7}{R_B}$ $\because V_{BE} pprox 0.7V$
- again this is not a recommended approach
- because typically large variations in the value of β exist among units of the same device type
- this variation in β will result in large variation in I_C (as $I_C = \beta I_B$) and hence in V_{CE} (as $V_{CE} = V_{CC} I_C R_C$)

- thus Biasing by fixing V_{BE} and Biasing by fixing I_B
 - \circ result in wide variations in I_C and V_{CE}
 - and are therefore not viable options for practical BJT amplifiers
 - the following are the practical ways of biasing a BJT, which would result in stable bias point
 - 1. The classical discrete-circuit bias arrangement
 - 2. A two-power-supply version of the classical bias arrangement
 - 3. Biasing using a collector-to-base feedback resistor
 - 4. Biasing using a constant-current source

The Classical Discrete-circuit Bias Arrangement

- An effective (and most commonly used) biasing technique for discrete BJT circuits,
 - consists of applying the base of the BJT with a fraction of the supply voltage V_{CC} through a voltage divider R_1 , R_2
 - and connecting a resistance R_E in the emitter lead

• the voltage divider circuit can be replaced by its Thevenin equivalent

• here
$$V_{TH} = V_{BB} = rac{R_2}{R_2 + R_1} V_{CC}$$

• and

Figure 6.60 Classical biasing for BJTs using a single power supply: **(a)** circuit; **(b)** circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.

• By KVL

•
$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

• As $I_B = \frac{I_E}{\beta + 1}$
• $= \Rightarrow V_{BB} = \frac{I_E}{\beta + 1} R_B + V_{BE} + I_E R_E$
• or $V_{BB} - V_{BE} = I_E \left(\frac{R_B}{\beta + 1} + R_E\right)$
• $I_E = \frac{V_{BB} - V_{BE}}{\left(\frac{R_B}{\beta + 1} + R_E\right)}$

• As
$$I_C = \alpha I_E$$
 and as α varies very little.

• e.g.
$$\beta = 150 \Rightarrow \alpha = \frac{150}{151} = 0.9934$$
 and
 $\beta = 50 \Rightarrow \alpha = \frac{50}{51} = 0.9804$

• = \Rightarrow a stable I_E will result in equally stable I_C and vice versa

$$ullet$$
 thus $I_E=rac{V_{BB}-V_{BE}}{\left(rac{R_B}{eta+1}+R_E
ight)}$

 $\circ = \Rightarrow$ to make I_E (and hence I_C) insensitive to temperature and eta variations,

• we design the circuit to satisfy the following two constraints

1.
$$V_{BB} > V_{BE}$$
 (As V_{BE} changes with temperature)
2. and $R_E > \frac{R_B}{\beta+1}$
 $V_{BB} = V_{CC} \left(\frac{R_2}{R_1 + R_2} \right) \bigvee_{R_C} \bigvee_{I_C} I_C$
 $R_B = R_1 \parallel R_2 \bigvee_{I_E} I_E$
(b)

- Condition 1 ($V_{BB} > V_{BE}$) ensures that the numerator of the expression for I_E stays the same, despite small changes in V_{BE}
 - \circ however there is limit, on how large V_{BB} can be made.
 - for a given value of V_{CC} , the higher the value of V_{BB} , the lower will be the sum of voltages across R_C and the V_{CB}
 - to obtain high gain and large signal swing (+ve signal swing, avoid cutoff), we need to have large value of $I_C R_C$
 - we also require large V_{CB} to ensure large signal swing (-ve signal swing, avoid saturation)

- Condition 1 ($V_{BB} > V_{BE}$)
 - $\circ\,$ thus we have a conflicting set of requirements and the solution must be a trade-off
 - As a rule of thumb, we can design for $V_{BB} \approx \frac{1}{3}V_{CC}$, $V_{CB} \approx \frac{1}{3}V_{CC}$ and $I_C R_C \approx \frac{1}{3}V_{CC}$
 - $\hfill \label{eq:linear}$ Note that here we have ignored the voltage drop across the resitor R_B
 - to include this drop, we can use $V_{BB} I_B R_B = \frac{1}{3} V_{CC}$,
 - $V_{CB}=rac{1}{3}V_{CC}$ and $I_CR_C=rac{1}{3}V_{CC}$
 - (As the KVL equation would be

$$V_{CC} = I_C R_C + V_{CB} - I_B R_B + V_{BB})$$

$$I_E = \frac{V_{BB} - V_{BE}}{\left(\frac{R_B}{\beta+1} + R_E\right)}$$

$$V_{BB} = V_{CC} \left(\frac{R_2}{R_1 + R_2}\right) \xrightarrow{V_{CC}} I_C$$

$$R_B = R_1 \parallel R_2$$

$$I_E = I_E R_E = I_E$$
(b)

• Also by KVL, $V_{BB} = I_B R_B + V_B = \Rightarrow V_B = V_{BB} - I_B R_B$ • thus the rule of thumb is $V_B = \frac{1}{3} V_{CC}$, $V_{CB} = \frac{1}{3} V_{CC}$ and $I_C R_C = \frac{1}{3} V_{CC}$

• Condition 1 ($V_{BB} > V_{BE}$)

 \circ thus the rule of thumb is $V_B=rac{1}{3}V_{CC}$, $V_{CB}=rac{1}{3}V_{CC}$ and $I_CR_C=rac{1}{3}V_{CC}$

Figure 6.60 Classical biasing for BJTs using a single power supply: **(a)** circuit; **(b)** circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.

- Condition 2 ($R_E > rac{R_B}{eta+1}$) makes I_E insensitive to variations in eta

 \circ and could be satisfied by selecting R_B small

- As $R_B=R_1\parallel R_2=rac{R_1R_2}{R_1+R_2}$, R_B = small means low values for R_1 and R_2
 - \Rightarrow the input resistance of the amplifier is lowered (if the input is coupled to the base, R_1 and R_2 will appear in parallel between the base and ground)

•
$$I_E = rac{V_{BB} - V_{BE}}{\left(rac{R_B}{eta + 1} + R_E
ight)}$$

- \circ Note that this condition($R_E > rac{R_B}{eta+1}$) $= \Rightarrow R_B = R_1 \parallel R_2$ is very small i.e. the base voltage is independent of the value of the β and is determined solely by the voltage divider
- Condition 2 ($R_E > \frac{R_B}{\beta+1}$)
 - this condition can be satisfied by setting the current in the divider to be much larger than the base current
 - typically one selects R_1 and R_2 such that their current is in the range of I_E to $0.1I_E$

- Note that here the resistor R_E tend to stabilize the bias current I_E (and hence I_C) • Consider that for some reason the emitter current increases.
 - - = \Rightarrow the voltage drop across R_E and hence V_E will increase
 - As because of condition 2, V_B is determined primarily by voltage divider R_1 , R_2 i.e. V_B will stay fixed $= \Rightarrow V_{BE} = V_B - V_E$ has decreased = this in turn will reduce the emitter (and collector) current

 - thus R_E stabilizes the bias current

Example 6.20

• We wish to design the bias network of the amplifier in Fig. 6.60 to establish a current $I_E = 1mA$ using a power supply $V_{CC} = +12V$. The transistor is specified to have a nominal β value of 100.

• here
$$I_E=1mA$$
 , $V_{CC}=12V$, $eta=100$
• $\Rightarrow lpha=rac{eta}{eta+1}=rac{100}{101}=0.9901$

- $I_C=lpha I_E=0.9901 imes 1m=0.9901mA$
- As a rule of thumb, this biasing circuit can be designed by setting
 - $V_B=rac{1}{3}V_{CC}$, $V_{CB}=rac{1}{3}V_{CC}$ and $I_CR_C=rac{1}{3}V_{CC}$
 - here last two conditions ($V_{CB} = \frac{1}{3}V_{CC}$ and $I_CR_C = \frac{1}{3}V_{CC}$) will ensure enough signal swing
 - 1st condition ($V_B = \frac{1}{3}V_{CC}$) will ensure bias point stability

Handout 14 , Asst $\ensuremath{\mathsf{Prof}}$ M Anis Ch, Electronic Devices and Circuits

•
$$V_B = 4V, V_{CB} = 4V$$
 and $I_C R_C = 4V$
• $V_{CB} = 4V = \Rightarrow V_C - V_B = 4V$ or $V_C = V_B + 4 = 8V$
• $A_S V_{BE} = 0.7V = \Rightarrow V_B - V_E = 4 - V_E = 0.7$ or
 $V_E = 4 - 0.7 = 3.3V$
• by ohms law
• $I_E R_E = V_E = 3.3 = \Rightarrow R_E = \frac{V_E}{I_E} = \frac{3.3}{1m} = 3.3k\Omega$
• $A_S I_C R_C = 4V$ and $I_C = 0.9901mA$
• $a \Rightarrow R_C = \frac{4}{I_C} = \frac{4}{0.9901m} = 4.04k\Omega$
• A_S the current through R_2 can be set to be in the range of I_E to
 $0.1I_E$
• $I_{R2} = 0.1 V_E$
• $I_{R2} = 0.1 \times 1m = 0.1mA$
• by ohms law
• $I_{R2} = \frac{V_R}{I_R} = \Rightarrow R_2 = \frac{V_R}{I_{R2}} = \frac{4}{0.1m} = 40k\Omega$
• A_S by ohms law
• $I_{R1} = \frac{V_{R2}}{R_1} = \Rightarrow R_2 = \frac{V_R}{I_R} = \frac{4}{0.1m} = 40k\Omega$
• A_S by ohms law
• $I_{R1} = \frac{V_{CC} - V_S}{R_1} = \frac{12 - 4}{R_1}$ or $R_1 = \frac{8}{I_{R2}}$
• By KCL
• $I_{R1} = I_{R2} + I_B = 0.1m + \frac{I_R}{B+1} = 0.1m + \frac{1m}{101} = 0.1099mA$
• $a \Rightarrow R_1 = \frac{8}{I_{R2}} = \frac{122.40k}{R_1 + R_2} = \frac{480k}{112.733k+40k} = \frac{480k}{112.733k} = 4.2556V$,
 $R_B = R_1 \mid R_2 = 25.815K\Omega$
• $I_E = \frac{V_{CDE} - V_{DE}}{\left(\frac{R_R}{R_1 + R_E}\right)} = \frac{42556 - 0.7}{\left(\frac{28.434}{101} + 3.3k\right)} = 1mA$

A Two-Power-Supply Version of the Classical Bias Arrangement

• if two power supplies are available, a relatively simpler biasing arrangement can be used

• By KVL along L
•
$$I_B R_B + V_{BE} + I_E R_E - V_{EE} = 0$$

• as $I_B = \frac{I_E}{\beta + 1}$
• $\frac{I_E}{\beta + 1} R_B + V_{BE} + I_E R_E = V_{EE}$
• $I_E \left(\frac{R_B}{\beta + 1} + R_E\right) = V_{EE} - V_{BE}$
• or $I_E = \frac{V_{EE} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$
• $I_E = \frac{V_{EE} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$

•
$$I_E = rac{V_{EE} - V_{BE}}{R_E + rac{R_B}{eta + 1}}$$

• Note that this equation is identical to the one obtained for "Classical Discrete-Circuit Bias Arrangement" (i.e. $I_E = rac{V_{BB} - V_{BE}}{R_E + rac{R_B}{eta + 1}}$) except for V_{EE} replacing

 V_{BB} .

- Thus the two constraints mentioned previously apply here as well
- Note that if the transistor is to be used in common-base configuration, then R_B can be eliminated i.e. $R_B = 0$

Biasing Using a Collector-to-Base Feedback Resistor

• Another effective discrete-circuit biasing arrangement is possible by \circ connecting a feedback resistor R_B between the collector and the base

Figure 6.62 (a) A common-emitter transistor amplifier biased by a feedback resistor R_{B} . (b) Analysis of the circuit in (a).

• by KVL,
$$V_{CC} = I_E R_C + I_B R_B + V_{BE}$$

• as $I_B = \frac{I_E}{\beta+1}$
• $V_{CC} = I_E R_C + \frac{I_E}{\beta+1} R_B + V_{BE}$
• $V_{CC} - V_{BE} = I_E R_C + \frac{I_E}{\beta+1} R_B$
• $V_{CC} - V_{BE} = I_E \left(R_C + \frac{1}{\beta+1} R_B\right)$
• $\frac{V_{CC} - V_{BE}}{R_C + \frac{1}{\beta+1} R_B} = I_E$
• $I_E = \frac{V_{CC} - V_{BE}}{R_C + \frac{R_B}{\beta+1}}$
• $I_E = \frac{V_{CC} - V_{BE}}{R_C + \frac{R_B}{\beta+1}}$
(b)

• Note that this equation is identical to the one obtained for "Classical Discrete-Circuit Bias Arrangement" (i.e. $I_E = \frac{V_{BB} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$) except for V_{CC} replacing

V_{BB} .

• thus this circuit does provide bias point stability

• i.e. to obtain stable bias point

• $V_{CC} > V_{BE}$

- and $R_C > rac{R_B}{eta+1}$
- Also note that in this circuit arrangement, the allowable negative signal swing at the collector is determined by the value of R_B
 - by KVL

Biasing Using a Constant-Current Source

- \bullet Another effective way for biasing a BJT is shown in fig and it utilizes a constant-current source I
 - This circuit has the advantage that the emitter current is independent
 - of the values of β and R_B
 - thus R_B can be made large, enabling an increase in the input resistance at the base
 - without adversely affecting bias stability

• the current source I can be implemented by the circuit (known as current mirror) shown in fig b

 $\circ = \Rightarrow$ their collector currents will be equal

$$= \Rightarrow I_{C,Q2} = I_{C,Q1} = I = I_{REF}$$

$$= thus I - I_{DEE} - \frac{V_{CC} + V_{EE} - V_{BE}}{V_{CC} + V_{EE} - V_{BE}}$$

• thus
$$I = I_{REF} = \frac{V_{CC} + V_{EE} - V_{EE}}{R}$$

- \blacksquare Neglecting the Early Effect in $Q_2,$
 - the collector current $I=I_{C,Q2}$ will remain constant at this value $\left(rac{V_{CC}+V_{EE}-V_{BE}}{R}
 ight)$

- as long as the transistor Q₂ stays in active region.
 i.e. as long as the voltage at the collector is kept greater than that at the emitter by at least 0.3V (V_{CE} ≥ 0.3)

Exercise 6.47 Exercise D6.48 **Exercise D6.49** Exercise 6.50